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Einstein equation with quantum corrections reduced to second order
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We consider the Einstein equation with first-order (semiclassical) quantum corrections. Although the
quantum corrections contain up to fourth-order derivatives of the metric, the solutions which are physi-
cally relevant satisfy reduced equations which contain derivatives no higher than second order. We ob-
tain the reduced equations for a range of stress-energy tensors. These reduced equations are suitable for
a numerical solution, are expected to contain fewer numerical instabilities than the original fourth-order
equations, and yield only physically relevant solutions. We give analytic and numerical solutions or re-
duced equations for particular examples, including Friedmann-Lemaltre universes with a cosmological
constant, a spherical body of constant density, and more general conformally flat metrics.

PACS number(s): 98.80.Cq, 03.65.Sq, 04.20.Cv, 04.60.+n

I. INTRODUCTION

Quantum corrections to general relativity are expected
to be important in regimes where the curvature is near
the Planck scale (li,t=+Gfi/c =1.6X10 cm). In a
regime where the curvature approaches but always
remains (significantly) less than the Planck scale, a semi-
classical approximation to the full theory of quantum
gravity should be sufticient. Examples of this regime in-
clude small evaporating black holes, when still much
larger than the Planck mass (mi,

&
=&irtc/G =2.2X 10

g), and the early Universe after it has reached a size of
many Planck lengths. In the standard semiclassical ap-
proximation, the gravitational field itself is treated classi-
cally, but is driven by the expectation value of quantum
matter stress energy.

The form of the semiclassical corrections to Einstein's
field equations is known for many important cases [1].
For example, for conformally Oat classical backgrounds
(in four dimensions), when the quantum state is con-
structed from the conformal vacuum, the corrections are
completely determined by local geometry (the metric, the
curvature, the covariant derivatives of the curvature) [2]:

tc(T,b ) =R,b
—,'Rg, b+Aggb—+aiA'( ,'R g,—b 2RR,b

——2 Rg,b+2V, VbR )

+a2A'( —,
'R' R,dg, b CIR,b

—
—,
' R—g,b+V, VbR —R'"R„db)+a3fi( —

—,', R g,b+R'"R„d„)+0(ih' ) .

The parameters a„o.2, and a3 depend on the particular
form of matter and regularization scheme, so we do not
assume specific values or signs. Factors of A have been
made explicit. Because the corrections are purely
geometric, it is common to consider them not as matter
source terms but as metric field terms (despite their
matter origin). Nonconformally fiat backgrounds can
have more quantum corrections than Eq. (1.1). Of the ex-
amples above, the state-independent terms of Eq. (1.1) do
not contribute in the case of the black hole, where the ex-
terior Ricci curvature vanishes, but they do contribute in
the case of cosmological solutions. Several cosmological
models are examined below. Because the new terms con-
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tain fourth derivatives in the metric, the new terms quali-
tatively change the field equations from a system of
second-order equations to a system of fourth-order equa-
tions.

The new fourth-order theory contains whole new
classes of solutions unavailable to the classical theory.
Many of these solutions have been examined [3]. One set
of these solutions is particularly disturbing however.
Solutions to the linearized theory around a Aat back-
ground strongly indicate that Oat space is unstable to ul-
traviolet fiuctuations [4,5]. Using a I/N approximation,
Hartle and Horowitz showed that the ultraviolet instabil-
ity can be made to occur at frequencies arbitrarily far
below the Planck frequency, indicating that the instabili-
ties cannot be easily fixed by calling the full quantum
theory of gravity to the rescue [5]. Additional instabili-
ties have also been found by Suen [6]. This strongly indi-
cates that semiclassical gravity, if all its solutions are con-
sidered physical, is not a good description of the near
classical limit of quantum gravity.
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It was shown in earlier work [7] that it is possible, and
indeed desirable, to modify semiclassical gravity in a way
suggested by and consistent with the perturbative nature
of its derivation. The effective action and field equations
of semiclassical gravity are perturbative expansions (for-
mally, asymptotic expansions) in powers of A', truncated
at first order in A. All behavior higher order and nonper-
turbative in A has already been lost in the process of
deriving the (approximate) effective action and field equa-
tions. Self-consistency then requires that only the solu-
tions that are also asymptotic expansions in powers of A,
truncated to first order, will be approximations to solu-
tions of the full, nonperturbative effective action. Solu-
tions not in this form are likely to be unphysical and
should be excluded. A simple model, presented below,
will demonstrate that retaining nonperturbative solutions
to a perturbatively derived higher derivative action re-
sults in false predictions. The nonperturbatively expand-
able solutions are spurious artifacts arising from the
higher derivatives appearing in the perturbative correc-
tion, and will be referred to as spurious. For conve-
nience, perturbatively expandable solutions will some-
times be referred to as physical, since only they corre-
spond to predictions of the self-consistent semiclassical
theory. For semiclassical gravity, it has been shown that
the physical solutions show no signs of any instability of
fiat space (to first order in A') [7].

The easiest way of implementing the self-consistent
method in semiclassical gravity is by reducing the
fourth-order equation, which has both physical and non-
physical solutions, to a second-order equation, which has
only physical solutions (with one caveat described below).
This iterative reduction has been demonstrated in a simi-
lar context by Bel and Sirousse-Zia for the case a3=0 [8].
Much of the reduction (though not always all) can be
done covariantly. It is clearly more efficient to find solu-
tions to the reduced second-order equations, almost all of
which are physical, rather than finding all solutions to
the full fourth-order equations, most of which are spuri-
ous, and only using those which are physical.

The aim of this work is to apply the reduction of order
to a wide variety of gravitational systems. These include
computing the reduced semiclassical equations for Fried-
mann cosmologies (homogeneous isotropic solutions with
perfect fiuid matter), Friedmann-Lemaftre cosmologies
(Friedmann cosmologies with cosmological constant), an
interior Schwarzschild solution, and the general, confor-
mally Oat metric in terms of its conformal factor. Exam-
ples of analytic and numerical methods are employed. In
particular, we find the exact semiclassical solutions for
spatially Aat, radiation-filled Friedmann cosmologies, and
exact and numerical semiclassical "bounce" solutions for
radiation-filled Friedmann-LemaAre cosmologies. As ex-
pected, the semiclassical corrections usually play only a
small role in most systems far from the Planck scale.
There are exceptions to this rule of thumb, however,
which we demonstrate by analyzing the semiclassical
corrections to the (unstable) eternal Einstein universe.
Here the corrections can cause large deviations from the
classical solutions and yet remain within the domain of
reliability. We do not explicitly account for effects of

particle creation (except in conformally fiat spacetimes),
only for "state-independent" contributions to the stress
energy.

II. REVIEW OF SEMICLASSICAL CORRECTIONS

The semiclassical field equations of general relativity
(including cosmological constant) take the form

Rob —2Rgab+Ag~b =ir( T~b ) (2.1)

where ( T,b ) =O(iri) is the expectation value or transition
amplitude of the matter stress-energy tensor. For con-
venience, we consider only massless, conformally coupled
fields (of arbitrary spin). We may reasonably restrict the
form of (T,b) to obey Wald's physical axioms [9]: (1)
covariant conservation; (2) causality; (3) standard results
for "off-diagonal" matrix elements; (4) standard results in
Minkowski space. Wald showed that any ( T,b ) that
obeys the first three axioms is unique up to the addition
of a local, conserved tensor. Furthermore, any local,
conserved tensor can reasonably be considered part of the
geometrical dynamics and so be written on the left-hand
side of the field equations. We shall do so, rewriting Eq.
(2.1) as

R,b
—,'Rg, b+Ag—,b+Q, b =v( T,b ), (2.2)

where A,,b is conserved and purely local; i.e., it is con-
structed purely from the metric, the curvature, and a
(finite number of) its covariant derivatives.

Only terms in Q,b that are first order in A will be con-
sidered, since the semiclassical approximation already
neglects higher-order contributions [10]. Any term con-
tributing to A, b with a constant coefficient proportional
to R must have dimensions of (length), since the only
length scale is the Planck length lp] and %=lpga in units
where G=1. This restricts the form of A,,b for general
spacetimes in four dimensions to linear combinations of
two possible contributing terms [11]:

(&)~ 1 6 d' &xg R'
ab

=—'R g,b
—2RR, b

—2 Rg,b+2V, VbR, (2.3)

H,b= —
b f d x&gR' R,d

g g ab

2
R '"R,dgab

— R~b —2Rg

+V, VbR —R'"R„db . (2.4)

H, b
= —

—,', R g~b+R'"R, ~db

R,'R,b+ ', RR,b+ ,'—R,dR'"g,—b —
—,'R g,b—, (2.5)

These two expressions are automatically conserved from
their variational definitions. They are also fourth order
in time derivatives of the metric. In conformally Aat,
four-dimensional space-times (where the Weyl tensor Cd, ~

vanishes), "'H,b and ' 'H, b no longer remain linearly in-
dependent (in this case ' "H,b

=3 '2'H, b). However, a new
quantity appears,
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2
x"—— (x'"—x x x")= F "x" .

3 m m
(2.7)

The classic example of a nonphysical solution has F "=0
but exponentially increasing acceleration:

3m' 2 3m'x"= cosh exp , sinh exp 22e
,0,0 -

~

(2.&) )

If the theory is to make useful predictions, unphysical
solutions such as this must be excluded. In fact, this so-
called "runaway" solution shares much in common with

which is conserved only in conformally flat space-times,
but not as a result of a variational derivation, nor as the
limit of a conserved quantity in nonconformally flat
space-times [12]. It is second order in derivatives of the
metric, unlike '"H,

b and ' 'H, &. Nevertheless, it is al-
lowed by Wald's axioms, and, in general, contributes to
the conformal anomaly. The most general expression for
Q,b is then

Q,b
a—,fi H, b+a2A'' 'H, b+a3A' 'H, „+O(R ),

(2.6)

where it should be understood that the ' 'H, b term is only
present when "'H,

&
=3' 'H, &. Values of a„a2, and o.3

are predicted by specific matter couplings and regulariza-
tion schemes, but we will treat them as free parameters.
Factors of A have been made explicit. Inserting Eqs.
(2.3)—(2.6) into Eq. (2.2) produces Eq. (1.1).

As pointed out above, the new fourth-order theory
contains whole new classes of solutions unavailable to the
classical, second-order theory. It is the new solutions
that would indicate the instability of flat space. Since flat
space is experimentally stable (or at least very metasta-
ble), this strongly indicates that semiclassical gravity, if
all its solutions are considered physical, is not a good
description of the near classical limit of quantum gravity.
However, the derivation of the theory is well founded,
and it seems likely that some of the solutions do corre-
spond to what we expect from quantum corrections to
classical theory. It is necessary to break up the solutions
to the semiclassical field equations into those we do not
consider part of the theory (spurious or "unphysical" )

and the rest of the solutions ("physical" ), which contain
all the important information of the theory.

That a theory should contain unphysical solutions
should not be surprising to anyone who has examined
Dirac's theory of charged particles including electromag-
netic back reaction [13]. The electromagnetic back-
reaction problem shares several features with the quan-
tum back reaction described above. Its most important
features are the following: (1) a small correction term to
the equations of motion changes the order of the equa-
tions of motion (from second order to third order) and (2)
not all solutions to the new equations of motion are phys-
ical; some must be excluded by external criteria. Dirac's
equation of motion is

the particular solutions to linearized semiclassical gravity
which contribute to the instability of flat space. Other
theories with higher derivative corrections, such as cos-
mic strings with rigidity corrections, can give unphysical
solutions with negative kinetic energy [14—16].

Similar problems occur even for semiclassical quantum
electrodynamics (QED). The running of the electron
charge coupling results in an effective action and La-
grangian density with higher-order corrections [17]:

AeL
1 —

2 z F„+ +matter,
60m m

(2 9)

where eL is the low-energy electron charge. In this case
it is clear what should be done. The higher derivatives in
Eq. (2.9) do not correspond to new degrees of freedom for
the electromagnetic field, but rather to the running of the
charge. Since the effective action is a perturbative expan-
sion in A, one may first solve the lower-order equations of
motion, and then solve higher orders iteratively. Treat-
ing Eq. (2.9) as a true fourth-order equation would result
in a theory very different from classical electrodynamics,
where the electromagnetic field possesses negative-energy
modes. This is clearly undesirable from a physical point
of view (though the resulting theory is mathematically
well defined).

One technique of distinguishing and excluding unphys-
ical solutions of higher derivative theories is called the
self-consistent method [15,18], and was first applied in
the case of the classical Dirac electron by Bhabha [19].
In the case of semiclassical QED shown above, it is
equivalent to the obvious method of constructing higher-
order solutions iteratively. It can be applied to any
theory for which higher derivative terms in the field
equations are perturbative corrections to a lower-order
theory, and is most naturally applied to theories derived
from an effective action with a small parameter that has
been expanded in a power series. One expects extrema of
that expanded action to be (perturbative) approximations
to the extrema of the full effective action. For ordinary
actions, whose variations give second-order differential
equations, this is usually true. For actions which possess
higher derivative expansions, however, the opposite is
true: most solutions of the perturbatively expanded field
equations do not even have a perturbative expansion (i.e.,
they are not analytic in the expansion parameter as the
parameter approaches zero).

An obvious cure for this behavior is to only rely on
those solutions that are perturbatively expandable (in the
same sense as their effective action) to be physical. All
other solutions are treated as spurious by-products of the
higher derivatives, not to be considered part of the theory
(e.g. , the runaway Dirac electron).

The self-consistent approach is extremely powerful. It
removes all runaway and negative-energy solutions. It
can be applied to semiclassical gravity as easily as to
Dirac's classical electron. The amount of initial data re-
quired to specify a physical solution is the same as for the
original uncorrected theory [20]. In the case of cosmic
strings, where the full action is known exactly, any
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method not equivalent to the self-consistent approach
simply gives the wrong results. The self-consistent ap-
proach seems clearly applicable to the case of serniclassi-
cal gravity.

The solutions of semiclassical gravity are solutions to a
fourth-order differential equation. The amount of initial
data required to specify a physical solution, however, is
the same as for classical gravity, which is given by solu-
tions to a second-order differential equation. One can
often find a second-order differential equation which con-
tains all the physical solutions to semiclassical gravity.
This reduction of order greatly simplifies the process of
finding physical solutions since most unphysical solutions
are completely bypassed. The reduction is performed
iteratively, using lowest- (perturbative) order results to
simplify the higher-order semiclassical corrections.
Reductions for corrections containing "'H,b and ' 'H, b

have been calculated for several cases by Bel and
Sirousse-Zia [8]. The nonlinearity of general relativity
makes reduction of order awkward for the most general
solutions unless the stress-energy tensor has an extremely
simple dependence on the metric. Just as in the case of
classical gravity, however, the presence of symmetries
can make soluble an otherwise intractable problem. We
begin with the example of semiclassical corrections in
Friedmann-Lema~tre universes.

There is a small but important caveat regarding remov-
ing spurious solutions by the reduction of order. All the
physical solutions to the higher-order field equations are
also solutions to the reduced equations, but, still, not all
solutions to the reduced equations may be physical solu-
tions. If the corrections are nonlinear in the field vari-
able, there may remain a much smaller number of spuri-
ous that must still be expunged. On reduction, however,
it is often easy to identify the unphysical solutions and re-
move them.

Reduction of order (and the above caveat) are well
demonstrated by a simple example. The example uses a
toy "semiclassical" equation

ds = dt +a—(t) dr +r d8 +r sin 8dg
1 —kr

(3.1)

where k takes the values +1 or 0. The matter consists of
radiation and the cosmological constant need not be zero.
The (t, t) component of the Einstein equation with first-
order quantum corrections is of third order in time
derivatives of the scale factor a(t). We first reduce the
equation to first order (the same order as the correspond-
ing classical Einstein equation), which the physically
relevant solutions satisfy. For various values of the spa-
tial curvature k and cosmological constant A, we obtain
analytic and numerical solutions. For some solutions
within this class of Friedmann-Lemaitre universes we find
that there are models for which the first-order quantum
corrections remain small at all times. In some cases, the
effect of small quantum corrections can cause a large de-
viation from the corresponding classical solution over a
long period of time.

In this conformally flat class of metrics, the Einstein
equations with quantum corrections are of the form

The first of these manifestly produces only solutions per-
turbative in fz and so contains only physical solutions.
The second set is found only after treating A nonperturba-
tively: it would not be found using strictly perturbative
methods and thus describes nonphysical solutions. The
point is that even though Eq. (2.12) is reduced to second
order, some care must still be exercised until the equation
has been put into form of the first line of Eq. (2.13). In
practice, we will often use reduced equations in the form
of Eq. (2.12), but if numerical methods are used, the form
of Eq. (2.12) may not be adequate and one may need
analogues of Eq. (2.13).

III. FRIEDMANN-LEMAITRE MODELS
WITH QUANTUM CORRECTIONS

In this section, we consider general Robertson-Walker
metrics of the form

x = —co x+afi'x" +O(iil ), (2.10) R,q
——2gabR +Ag, b

which is nonlinear in the fourth derivative correction.
This is straightforwardly reduced with the substitution

iit''x" = fico x+O(—A ),
resulting in the reduced equation

x = —co x+aAco x +O(iit ) .

(2.11)

(2.12)

This second-order equation still contains all the physical
solutions (perturbatively expandable in fi), but because of
the quadratic nature of the equation, contains solutions
nonperturbative in A. Solving the quadratic equation
gives

+iiia, "'H,b+iiia3' 'H, b+O(ft )=icT,b . (3.2)

( i )
—18k 36ka 54a

a4 a4 a4
36a a

a

18a
a

36aa' '

a
(3.3)

Here A is the cosmological constant, and T,b includes
classical matter contributions and the lowest-order expec-
tation value of quantum matter, and '"H,

b and ' 'K, b are
defined by Eqs. (2.3) and (2.5). The state-independent lo-
cal quantum corrections of order A are included in the H
terms on the left-hand side.

With the metric of Eq. (3.1),

2' x
1++1+4ah'co x

1++1+4aA'co x
2anm4

= —co x+afico x +O(fi ),
1

+co x+
cxf2co

(2.13)

and

(3) 3k 6ka 3a
a4 a4 a4

(3.4)

The (t, t) component of the generalized Einstein equa-
tion (3.2), with matter consisting of radiation, is
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KPoa o 3k+ 3a —/8k +36ka +54a —36aa a + 18a a —36a 2aa0= —A — + +a)Ra4 Q a4

+ I 3k'+6ka'+3a"
+O(A2) (3.5)

Here, pp is the radiation density at the time when the
scale factor is ao. The a dependence of the pp term fol-
lows directly from conservation of the stress energy and
the fact that the expectation value of the trace, T,', van-
ishes to lowest order. The order-A quantum corrections
to this trace give rise to the a& and o.3 terms. The values
of the a's depend on which massless fields make up the
radiation. In the spatially closed universe (k =1), as a
result of the nonlocal Casimir vacuum energy, the value
of po will have added to it a small constant value propor-
tional to A' [21,22]. There is no additional nonlocal con-
tribution to the stress energy because we are dealing with
conformally invariant free radiation fields in Robertson-
Walker metrics, which are all conformally Aat. Before at-
tempting to solve this equation, we reduce it to lower or-
der in time derivatives of a(t), so that all solutions are as-
sured to be of physical significance.

Using the above results repeatedly in Eq. (3.5) reduces
it to the first-order differential equation:

3k 3Q

Q Q

po o 8AKppQp
4 4

—a)A
a a

A
+a3A +

3

2AKPpQp K PpQo
4 2 2 8

+ +O(A ).
3Q 3Q

(3.11)

B. Spatially Hat model with radiation and A =0

Except for the correction term involving a, all of the
terms of order A' can be absorbed by a renormalization of
the constants A and K. We make use of this renormaliza-
tion when we discuss below models with radiation, spatial
curvature, and a nonzero cosmological constant.

A. Reduction of equation for scale factor

Multiplying Eq. (3.5) by A' and working to first order in
A gives

A'a = fik+A' +A—' +O(fi ) .
3Q

(3.6)

This expression can be used twice to find that

2AKPpQ p K PpQ p 2kKPpQ o
4 2 2 8 4

Aa =6k +Pi +A
9 9a 3a

2Ak A
+Pi +O(A' ) .

3 9

Differentiating Eq. (3.6) leads to

(3.7)

KppQ ()A'd= fi +A' —+O(A' ) .
3Q

(3.8)

Here we have divided by a, assuming that it is not zero in
the time interval of interest. Making use of this result
twice gives

A simple but illuminating solution to the reduced
Friedmann-Lemaftre-Einstein equation (2.11) is the spa-
tially fiat (k =0) case with zero cosmological constant
(A=O) and pure radiation [p=po(ao/a) ]. This should
be a good approximation to our Universe for one part of
its history, after any inflationary epochs which smoothed
out inhomogeneities but before massive fields cooled to
nonrelativistic temperatures. The classical solution,
which has the scale factor grow as the square root of
cosmological time, begins with a curvature singularity,
and expands forever, becoming more and more Bat. Be-
cause the physical semiclassical solutions are corrections
to the classical solutions in powers of curvature, we ex-
pect that, at late times, when the classical solution is
nearly Aat, the semiclassical corrections will be small. At
early times, when the curvature is below the Planck scale
but not above it, we expect the semiclassical corrections
to be significant. At very early times, however, when the
classical curvature is near or above the Planck scale, we
expect that the semiclassical approximation will break
down because neglected higher-order corrections would
dominate. We shall see how these effects manifest them-
selves belo~.

For A=O, k =0, and p=po(ao/a ), Eq. (2.11) reduces
to

9Q6 9Q2 9
(3.9)

We also need the third derivative Aa ' ', which is obtained
by differentiating Eq. (3.8):

KPao K P ao
a = —a3A' +O(ft~),

3a 9a

Xa"'=X '+X ' ' +O(X') .
3 4

(3.10)

which can be simplified by redefining the scale factor,
cosmological time, and correction constant a3„ in dimen-
sionless units
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4
—1/2

4&Ppa p

3

4
—1/2

4~Ppa p

3

given by ~„another constant of integration. The full
solution is

(3.15)

CX3 =CX3

glvlng

64KPpQ p

3

(3.12)

The apparently extra one-parameter family of solutions
(the freedom to specify r, as well as ~0) is a result of the
ambiguity in what it means to specify a solution. The
freedom to specify both ~p and ~& is equivalent to the free-
dom to specify one constant of integration, ~, to lowest
and first order in fi. This can be seen by expanding ~ in
powers of A, a=ra+Br, +O(fi ), and using it to write
solution (3.15) as

where a =da ldt This. can be solved iteratively with the
ansatz

a(t)=ao(t)+A'a, (t)+O(fi ) . (3.13)

where ~p is a constant of integration. When this is substi-
tuted into the second differential equation in (3.14), it
gives the first-order, linear, inhomogeneous equation

1a+ a =a(t ~)i (- )
I 3 0

which, for a given ~p, has a one-parameter family of solu-
tions,

a, (t )= —n3(t —ro) —
—,'r, (t —~o)

Inserting Eq. (3.13) into Eq. (3.12) and expanding in
powers of A gives

~0. —' 2n: ap= —ap
(3.14)

2apa
&

= —
—,
' a

&
a p +a3a p

The first equation gives the one-parameter family of (clas-
sical) solutions

This freedom is related to the freedom of choosing
different asymptotic expansions for the solutions, and is
discussed in more detail in Appendix B.

Another solution to Eq. (3.12), to the same order in fi,
1S

a and A differ only by terms higher order in A', so either
solution is as good as the other. To the extent the two
solutions disagree, the semiclassical approximation can-
not predict which solution is more accurate.

Figure 1 shows plots of a, 2, and ap as functions of t,
for two values of a3 (or, equivalently, a3). The three re-
gimes referred to above can be observed. When the
Universe is nearly fiat (for t 1), the semiclassical correc-
tions are small. For intermediate scales (0.25 ~ t 50.75,
for the particular a3 plotted, a3=+0.01), the corrections
are more substantial and cause noticeable deviations from
the classical solution. For very early times (t ~0.25), the
corrections dominate the classical solution. This, unfor-
tunately, is the regime in which they cannot be trusted.
This is made most obvious by noting the substantial

a(F) Semiclassical Scale Factor

0.5

FIG. 1. Plots of the scale factor a, 3, and

ao as functions of t, for a zero cosmological
constant and zero spatial curvature. The top
two plots are for F3=+0.01, the bottom two
are for cz3= —0.01, and the central plot, czo, is
for cz3=0 (classical solution). n and 3 are
equally legitimate solutions to the semiclassical
equations, differing only at order O(A ).

0.0 0.5 1.0
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differences (along the a scale) between the solutions a and
A for small t. Since they are both equally valid solutions
to the reduced semiclassical equations, to the extent they
differ, the predictions of either are not meaningful. For
positive (negative) a3 the effect of the corrections is to
make the Universe larger (smaller) than it would have
been at small times, but the most dramatic predictions in-
dicated by the solutions (and their plots) are in regimes
where the solutions should not be trusted. All one can
say is that at small times and large curvature, semiclassi-
cal corrections are important, and that at very small
times and very large curvature, the contribution from
higher-order corrections of quantum gravity are neces-
sary in order to make any meaningful predictions. The
values chosen for a3 in Fig. 1 (+0.01) have been chosen
extraordinarily large (though still well within the pertur-
bative regime) to demonstrate the qualitative effects of
the quantum corrections. If one were to choose a3 of the
Planck scale and a standard cosmological value for poao,
(x3 might be as small as 10

C. Models with radiation, spatial curvature, and AAO

More general models with general spatial curvature
and cosmological constant and radiation, are governed to
first order in fi by Eq. (3.11). This can be rewritten in the
form

K Q K Q3d + 3k
A

rPO 0 + &
rPo 0 +O(&2)

2 2 " 4 3g8

2
d 2 3 B

4(g+2kA ') (3.24)

Notice that C has the same value for k =+1, so that the
solution of this equation without the final term of order fi
is the same for positive or negative spatial curvature, and
is the same as the classical solution with renormalized
gravitational and cosmological constants.

Probably the most interesting case to consider in more
detail is that of positive spatial curvature, k = 1, with pos-
itive cosmological constant, A) 0. This case includes
both the "hesitation" and "turn-around" models of
Lemaftre.

The hesitation model spends a long time near the
configuration of the Einstein static universe, during
which density perturbations can grow rapidly. Close rel-
atives of this model, which do not require a cosmological
constant, have been recently considered in connection
with the growth of perturbations and galaxy formation
[23]. Such models may be affected by quantum correc-
tions in a manner similar to that considered here.

The turn-around model with no singularity is of in-
terest because the perturbative approximation for the
quantum correction is valid during the entire evolution of
the model. Over a long period of time this quantum
correction can cause a significant deviation of the radius
of the Universe from that of the corresponding classical
model.

The hesitation solution occurs when C)0, and has
zeroth-order solution of Eq. (3.24):

(3.16) g=C'~ sinh(s) . (3.25)
where constant terms first order in A have been absorbed
into a renormalization of the gravitational and cosmolog-
ical constants:

The turn-around solution occurs when C & 0, and has the
zeroth-order solution

A„—:A( 1 —
—,
' a3fiA ) (3.17) g =

~
C '~ cosh(s) . (3.26)

and

~„=—v(1 ——', a3A'A„+8a, fiA„) . (3.18)

(3.19)

With the exception of the final term, Eq. (3.16) has the
same form as in the corresponding classical Einstein
equation, but with ~ and A having constant corrections of
order A.

Before numerically integrating Eq. (3.16), it is advanta-
geous to carry out some analytic simplification. Define
the constants

In these solutions s could be replaced by s —so, with so
constant. Also, since the zeroth-order equation (for g)
does not depend on the sign of k, these classical solutions
remain valid when k = —1. However, the quantum
correction does depend on the sign of k; and we will only
consider the case of positive spatial curvature. We next
consider the corrections to the turn-around model, and
then the corrections to the hesitation model.

1. Turn-around or bounce universe

Dividing Eq. (3.24) by ~
C, and defining the dimension-

less function—4 4B—= 3~rpo~o

C=—BW -' —4k2W -'
Also define a dimensionless independent variable

(3.20)

(3.21)
'"g(s ),

and the dimensionless constants

A '~C~ '~2

(3.27)

(3.28)

and a function g(s) by

(3.22)
which regulates the abundance of radiation relative to the
cosmological constant, and

g
—=a2 —2k' (3.23) U =

—,'fia3B /(AC ), (3.29)

Then Eq. (3.16) can be written as which regulates the quantum corrections, we obtain in
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the case of the turn-around solution (C & 0):
2

G(s) —G(s) +1+U[6(s)+2u] =0.
ds

(3.30)

(The hesitation model obeys the same equation with +1
replaced by —1.) The initial conditions for a turn-around
solution are that G ) 1 and (d/ds)G &0, so that 6 will
approach a minimum value near 1 and then increase.
The perturbative solution will remain valid at all times
for which

U [G(s)+2u ] « 1 . (3.31)

The relationship between a and G can be written as

( /I 1/2g
)
2

( u
—16+2 )

1/2

The upper curves in Fig. 2 show the radius a as a func™
tion of time t, with both a and t measured in units of

=(4A„/3) ' . Both curves have u =0.5. The
lower curve has v=0. The upper curve includes the
quantum corrections coming from a3, and has v =0.4.
The boundary condition for both curves was that
G(1)=cosh(1). Again, as in Fig. 1, the numerical value
of the quantum correction, in this case v =0.4, has been
chosen to be much larger than one would expect from
Planck scale contributions, in order to emphasize the
qualitative effects of the corrections.

The curves were obtained by numerical integration of
the equation for (d/ds)G(s). In solving Eq. (3.30) for
(d /ds )6 (s), the positive square root was used in the
range from s = 1 to 0.092 33 at which 6 (s) has its
minimum value of 1.0467. The negative square root was
used for smaller values of s, since G(s) is a decreasing
function of s in that range. The correction term in Eq.
(3.30) remains smaller than 0.1 and has its largest value
when G goes through its minimum. Thus, the perturba-
tive solution is valid for all values of s.

The lower curve is the same as the classical solution
with %=A„, ~=~, . It corresponds to the solution given
in Eq. (3.26), and coincides with the quantum corrected
solution at t = 1 (in units of 2 '/ ). It is clear that as a
result of the deviation introduced near the minimum ra-
dius by the quantum correction, the two models have in-
creasingly different radii as one goes back into the past.

2. Semiclassical hesitation universe

—Io a +1—2 —2 2 1

4L 2 2 (3.32)

This has the solutions

Lo/2
~&= ~ (Lo/2) [1—exp[+2(t —to)/Lo] j +O(fi),

(Lo/2) [1 +e px[+2(t —to)/Lo]]

(3.33)

plotted in'Fig. 3. The first solution is the Einstein static
universe. The second begins at a singularity and asymp-

From the previous examples, one can see that it is
difticult to find examples of semiclassical corrections that
are not overwhelmingly small. The last example used the
exponential growth of the scale factor to magnify small
correction terms. One instance semiclassical corrections
might have a macroscopic impact is when the classical
field equations describe an unstable system. Even initially
small quantum effects could dominate the behavior at late
times.

One important example of an unstable cosmological
solution to the classical Einstein equations is the unstable
Einstein static universe. Historically, Einstein looked for
a static cosmological solution to describe an eternal
universe, leading him to modify his equations with a
cosmological constant. This solution is unstable, howev-
er, and small changes in initial data cause the Universe to
expand forever at an exponential rate (due to the cosmo-
logical constant) or to collapse to a curvature singularity.
One would expect quantum corrections to have similar,
drastic effects.

The simplest Einstein static universe is spatially closed
(k =1), contains a radiation fiuid, with density
p=po(ao/a), and cosmological constant, A, both care-
fully chosen such that A =9/(41rpoa 0). Defining a natural

length scale, Lo, such that L =os /A='1/4' a003/, we
can write the classical Einstein equation as

4
po oO(fi)=a ——a +k—

3 3a

a (t)

2. 35

Turnaround Universe

2. 3

2. 25

2. 2

2. 15

2. 1

FIG. 2. Plot of a as a function of t, each in
units of (4A„/3) ' . The lower curve is the
classical solution ( v =0) with u =0.5 and
A —A, K —K„. The upper curve includes quan-
tum corrections, with v =0.4 and other pararn-
eters unchanged.

2. 05

—0.5 0. 5
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+a~Pi ~ Lo Q +I —2 2 1

Q 4LO a
(3.34a)

This can be solved iteratively, as above, by expanding the
solutions as a series in A:

totically approaches the Einstein static universe at late
times (the positive exponential is the time-reversed solu-
tion). The third spends an infinite time near the Einstein
static universe, but pulls away and ends in an infinite
inflationary epoch (the negative exponential is the time-
reversed solution). The first and second solutions (and
the time-reversed third) are unstable.

The behavior of the semiclassical corrections should
reflect the instability of the classical solutions. The semi-
classical Einstein equation of Eq. (2.11) becomes

O(vari)=a La —+1— —6a A'~ 2 —2 2 1 1
0

4L, a

a =a,i +A'a
i +0 ( fi ), (3.34b)

where a, i is one of the classical solutions in Eq. (3.33).
Only the second and third solutions of Eq. (3.33) generate
solutions to the semiclassical equations in general. [It
should not be surprising that the constant solution has no
semiclassical counterpart. The effect of the semiclassical
corrections in Eq. (3.34a), if viewed as a Newtonian ener-
gy equation, is to change the potential term without
changing the total energy. The energy corresponding to
a static configuration without the corrections will not, in
general, correspond to a static configuration when the po-
tential is changed; to regain a static solution one Inust
change the initial matter density appropriately. ] The
equation of motion for a„obtained by inserting Eq.
(3.34b) into Eq. (3.34a), is a linear, first-order equation,
and can be solved in closed form.

The semiclassical solution generated by the initially
singular classical solution is

I.o exp[2(t r)LO —' ]
a = (1—exp[ —2(t r)Lo ']—) I+3a,fiLO

1 —exp[ —2(t r)Lo ' ]-
I+3 exp[2( t r)L 0

' ]—
-0' 2

4 1 —exp[ —2(t —7)LO ']
exp[ —2(t r)LO ' ]—

(1—exp[ —2(t r)LO '])—
exp[ —2(t r)LO ' ]-

+8(t —r)LO '
1 —exp[ —2(t —r)LO '

]

exp[ —2(t r)Lo ']-+3, ln(1 —exp[ —2(t r)LO ' ]) +O—(i' ),
1 —exp[ —2(t r)LO ' ]—

(3.35)

where r=to+fit, +O(iii ). As shown in Appendix A, the form of solution (3.35) is ambiguous up to the addition of
O(iii) terms proportional to d, i, arising from shifts O(iri) in the initial time (to~r =to+A't, ). One may always choose a
t, such that the coefficient of the ambiguous term is zero. This solution is plotted in Fig. 4 for a&AI. O

=0.0001 and
aifiLo = —0.0001 (though the qualitative behavior is independent of those values, as long as 6a, —ai) 0). As in the
case of the spatially flat, radiation-filled universe above, the semiclassical approximation breaks down when too close to
the initial singularity. At later times, where the semiclassical approximation is good, the effect of the corrections is to
pull away from the Einstein static solution and begin an inflationary epoch. At very late times, when the correction
terms dominate the classical solution completely, the corrections are untrustworthy, but at these late times the other
(late-time de Sitter) semiclassical solution exhibits the same inflationary behavior, and in a trustworthy regime. One can
hope to match the two semiclassical solutions in the intermediate regime, where both are valid. We do this below.

The semiclassical counterpart to the late-time de Sitter classical solutions of Eq. (3.33) takes the form

Lo exp[2(t —r')Lo '
]

a = (1+exp[ —2(t r')Lo ']) 1 —3a,ALo—
2 1+exp[ —2(t r')Lo ']—

CX)+ fiL 2
4 0

exp[2(t —r')Lo ']
1+exp[ —2(t —r')Lo ']

exp[ —2(t —r')Lo '
]

( 1+exp[ —2( t r')L 0
'

])—
exp[2(t —r')L o

'
]—8(t —r')Lo '

1+exp[2(t —~')Lo '
]

exp[2(t r')Lo ']-
+3 ln( 1+exp[ —2( t —r')L 0

'
] )

1+exp[2(t r')Lo ']— +O(iii ),

(3.36)
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Classical Maximal Hesitation Universes
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FIG. 3. Solutions to the classical maximal
hesitation equations. The upper plot is a maxi-
mal hesitation solution which spends an
infinite time near the Einstein static universe,
but pulls away and ends in an infinite

inflationary epoch. The constant solution is
the Einstein static universe. The lower plot,
also a maximal hesitation solution, begins at a
singularity and asymptotically approaches the
Einstein static universe at late times.

0.5 1.5 2. 5

where r'=to+AtI +O(fi ) and tI is chosen analogously
to t& above. Equation (3.36) is plotted in Fig. 4 for two
values of a, and a3. At late times, the corrections are
very small compared to the classical solution. At inter-
mediate times, the corrections are small but non-
negligible, and at early times the corrections are so large
as to be untrustworthy (Aa

&
/a,

&

~ l ).
Because the semiclassical solutions of Eqs. (3.35) and

(3.36) are valid in different regimes, it is important to ask
if there is any overlap of the regimes where both solutions
are valid. Furthermore, if there is such a regime, perhaps
the solutions can be smoothly joined, corresponding to a
universe beginning at large curvature near a singularity,
flattening off at nearly constant scale factor for an extend-
ed period of time, and then proceeding to inflate in a de
Sitter-like phase. This would correspond to a classical
"hesitation" universe in which the matter density (or
cosmological constant) is slightly greater than necessary
for the Einstein static universe.

For 6a& —a3) 0 [the parameter range for which the
solution of Eq. (3.35) is expanding at late times] there is
an overlap region in which we can match the solution of
Eq. (3.35) to the solution of Eq. (3.36), as shown in Fig. 4
by using the freedom to set the base times (r and r') of
each solution individually. The matching can always be
done smoothly, since the curves of a cross for all values
of ~—~', and we can adjust ~—~' such that a is continu-
ous (sufficient for matching solutions of a first-order
equation).

Furthermore, a is discontinuous only by terms O(A' ).
The matching can be done in regions where A'a, /a,

&
« 1

for both solutions for a wide variety of parameters (such
that 6a& —a3) 0). We may naturally interpret this join-
ing of matched solutions as a unique solution to the semi-
classical equation that is everywhere perturbatively valid
(except the region near the initial singularity). The time
of hesitation I& =~' —~ determined by the matching con-
ditions, is logarithmically related to the coefticients of the

1.5

0.5

Semiclassical Hesitation Universe

— Classical Initial Singularity
Semiclassical Initial Singularity—Classical Late-Time de Sitter
Semiclassical Late-Time de Sitter

1.6

1.55

1.5

1.45

1.35
1.2 1.4 1.6 1.8 2 2. 2 2. 4 2, 6 2. 8 3

I ~ I t

FIG. 4. Solutions of quantum corrections to
the maximal hesitation equations. Two classi-
cal solutions and their semiclassical coun-

—2= —2terparts are shown for a&RLO = —a3ALO
=0.0001. Both the classical and semiclassical
initial singularity solutions begin at small scale
factor, but the classical solution asymptotically
approaches the static Einstein solution while
the semiclassical solution diverges exponential-
ly from the classical solution {departing from
the perturbative regime). The classical and
semiclassical late-time de Sitter solutions both
agree at late times, but at early times the clas-
sical solution asymptotically nears the static
Einstein solution, and the semiclassical solu-
tion diverges exponentially from the classical
solution {departing from the perturbative re-
gime). The two semiclassical solutions may be
smoothly matched, as seen in the inset, result-
ing in a nonmaximal hesitation solution that is
always perturbatively valid.
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semiclassical corrections: th =Loin[(6a) —a3)A'Lo ],
due to the exponential time dependence of the semiclassi-
cal solutions.

The only potential obstacle to this interpretation is
that, although Aa, /a,

&
«1 where the joining is done,

A'a&/a, &=1. We feel that this is no reason to doubt the
validity of the joining, however, since Aa&/a,

&
becomes

large due to a,&
vanishing, not due to Aa

&
becoming large.

where

g,„=gd+fih, d+O(A ) .

This has the classical lowest-order expansion

G,b(g,'t', ) ~T—,),(g, ), ) =O(A'),

(4.3)

(4.4)

which is already known if S is known. The equation first
order in A is

IV. CONFORMALLY FLAT CORRECTIONS

A conformally fiat background space-time [for which
Eq. (3.2) gives the general form of the local corrections to
the stress energy] has a metric tensor related to the Min-
kowski metric tensor by

(g,d )h,f+a)R"'H, b(g,d )
5g,f

+~3)h H b(g d) )h+
~

(gd)h f O(~ )
5g,f

where

(4.&)

gcl 2S (4.1)

~T,), (g,d ) =O(fi ), (4.2)

where e is the conformal factor (a general scalar func-
tion), and i),b is the Minkowski tensor (note that the con-
formal transformation is not, in general, a diffeo-
morphism). Conformally fiat metrics are special in this
sense —the entire metric (a symmetric tensor with six in-
dependent components) is completely specified by a single
scalar function on the space-time.

As Eq. (4.1) is written, it is a tensor equation on the
space-time with classical metric. Here the Minkowski
tensor q, b is a tensor function defined on the physical
space-time. Since g,b is also the metric of flat Minkowski
space-time (or a piece of Minkowski space-time), Eq. (4.1)
implies that there is a map from the physical space-time
with metric g,b to an unphysical flat space-time with
metric g,b, and the conformal factor e can be viewed as
a scalar function on either space-time. If the conformal
factor is known on the unphysical flat space-time, this
knowledge can be exploited to simplify the calculation of
the semiclassical corrections, i.e., to do all the calcula-
tions on the unphysical flat background.

We expand the general semiclassical Einstein equations
for a conformally flat background

G,b(g,d )+a,R'"H,b(g,d )+a3A H b(g d )

5G,b
hef —= —

—,'VaVbh —
—,
' h,b+V, V(, hb)

—
—,'8 "h,ba

——'g" [ — h +V, V' h ' +R "h '
] (4 6)

and all derivatives and raising of indices are with respect
to the classical, physical metric. We have not explicitly
expanded the last term of Eq. (4.5), the functional deriva-
tive of the stress-energy tensor, since its functional depen-
dence on the metric depends on the particular form of
matter present. If the functional dependence is known
(as is often the case) then it is straightforward to calcu-
late.

This is a set of second-order, linear, inhomogeneous
equations for h, b. The second-order equation produces a
two-parameter family of solutions (just as for the classical
equation). The freedom to choose two additional free pa-
rameters in the semiclassical solutions arises from the
freedom to specify the two parameters of the solution to
the full semiclassical equations at both classical and semi-
classical order independently.

The power of Eq. (4.1) is most apparent when the con-
formal factor e is known as a function of the fictitious
flat space-time. A11 semiclassical calculations can be per-
formed on the flat space-time instead of the physical
space-time.

Then Eq. (4.6) becomes

5G,b
h,f =

—,
' e [2h, (, . )' —)h.,b

—h, b. , '+ 8S , 'h, b +4S ,(,hb)'. .e 2 c a;;a a;c

—4S.(ahb)c. +4S.(ah. b) +2S.chab. +2S.aS.bh +S.,S.'h, b
—8S.cS.(ahb)

+i),i, (
—h,d. '"+h;, '+2S.,h. '+2S.,S.'h )],

and the inhomogeneous terms are

'"H (g")="'H, (e' iI, )

=6e [ —12S. S. S.bS. ' —12S.~S.bS.~ +12S.~S.bS.a

(4.7)

+12S.cS.aS.b' —4S.caS.b'+6S.bS., ', +6S.,S., 'b —4S.,S a b

—2S.,',b+ii, b(3S ,S dS 'S. —3S., 'S.d.
"—.12S. .,S.dS. ' +4S.,dS. ' —2S.,S.'d +2S., 'd )], (4.8)
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(3)H (gcl ) 3)H, (e2Sil )

=e [ 4—S ,S.,S.bS . ' . 4—S ,S.bS ., '+4S , 'S. ,b +. 4S.,S.b S., '+ 4S.,S.,S.b
'

—4S.„S.b'+il, b(S.,S.dS. 'S. —2S.,'S.d
—4S.,S.dS. ' +2S.,dS. '")], (4.9)

where semicolons refer to derivatives covariant with
respect to the unphysical flat metric and all raising and
lowering of indices in Eqs. (4.7)—(4.9) are with il,b. For
a given stress energy, it is straightforward to put the last
term of Eq. (4.6) into a similar form. By putting Eq. (4.6)
in this form, the problem has now been simplified from
solving a second-order partial difFerential equation in
curved space-time to solving a second-order partial
dift'erential equation in flat space-time.

Useful formulas analogous to Eqs. (4.8) and (4.9), but
where the covariant derivatives and raising and lowering
of indices are performed with the physical background
metric, have also been calculated [24]. These would be
helpful in the case that the map from the physical space-
time to the unphysical space-time implied by (4.1) were
not known explicitly.

(1.1), is

fiG, b =fiaT,b+.O(i)i ), (5.1)

where T,b is the zero-order contribution of the stress-
energy tensor. It follows that

AR = A~T+—O(A ),
where T=T,'. Also,

AR, b =A~(T, b ,'g, b
T—)+—O(fi ) .

(5.2)

(5.3)

'"Hcb =~( 2T ,b
—,'gcbi.rT +—2—g,b T p~+2~TT, b )

Substituting these perturbative constraints into the ex-
pressions for "H,b gives (in four dimensions)

V. GENERAL CASK
+O(i)i), (5.4)

The previous examples involved Friedmann-
Robertson-Walker, Lernaltre, and other conformally flat
space-times. We now turn to general space-times. The
perturbative constraints in the general case can be used to
express the curvature tensors appearing in the first-order
quantum corrections (i.e., the H's) in terms of the lowest-
order (classical) stress-energy tensor T,b of the matter.
Usually this lowest-order T,b involves fewer derivatives
of the metric than do the curvature tensors, so that this
procedure results in an equation with fewer derivatives
than the original. For example, for a classical fluid or a
minimally coupled scalar field, the resulting equation
contains no more than second derivatives of the metric.

The reduction process must be modified when the
stress-energy tensor contains explicit curvature terms, as
for a conformally coupled scalar field. One way to deal
with such a case is to evaluate the curvature tensor ap-
pearing in T,b using the lowest-order classical solution,
since only that will contribute to the correction terms of
order A.

For simplicity, we will suppose that a cosmological
constant term, if present in the Einstein equation, is in-
cluded in the definition of T,b. Such a term in T,b in-
volves no derivatives of the metric.

The perturbatively constrained equations should not
have the instabilities exhibited when one tries to integrate
numerically higher derivative equations. Such instabili-
ties can be produced by the tendency for the growing or
runaway solutions in the enlarged solution space to dom-
inate the nearly classical perturbative part of solutions.
The runaway solutions will not be present in the solution
space after the reduction to lower derivatives.

The first-order perturbative constraint coming from
the Einstein equations with quantum corrections, Eq.

' 'H, b =v( —T cb+ T,b p~+. 2T, b~. ,'Irg, b T.
——

+2aTT, b
—2~T b T,i+ —,'~g, b T T~q)+O(fi),

(5.5)

and

Hcb &( 6ggb&T +
3 &TTgb

IrT b T,i'+ —,'ag, b T T~—~)+O(fi) . (5.6)

Then the perturbatively constrained Einstein equation
with quantum corrections in a general space-time is given
by Eqs. (2.2) —(2.6) with these values for "'H,

b and '2'H,
b

(with A=O). Only the lowest order or classical T,b ap-
pears in these quantum correction terms, and if there is a
classical cosmological constant present, then it is includ-
ed in the definition of the lowest order T,b. In general,
the stress tensor contribution on the right-hand side of
the semiclassical Einstein equation will include nonlocal
state-dependent contributions, such as those coming from
gravitationally induced particle creation and other
efFects. Local state-independent quantum corrections to
the stress-energy tensor are, of course, already included
with the local correction terms on the left-hand side. If
the zeroth-order stress tensor has vanishing trace T, as
for radiation or massless particles, then the equations
simplify considerably.

In a conformally flat space-time, ' 'H, b is replaced by
' 'H, b, and further simplification may occur if the field is
a massless conformally invariant field. The way in which
this occurs was already discussed in the introductory
section. Similar expressions for '"H,

b and ' 'H, b were
also obtained by Bel and Sirousse-Zia [8].
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A. Spherical body with quantum corrections

We next make use of the previous expressions for the
correction terms to write the equations governing the
quantum corrections to the gravitational field of a static
spherical body. These equations are in a form suitable
for numerical integration.

We first calculate the local state-independent quantum
corrections which enter into the Einstein equations for
the most general spherically symmetric space-time, which
has the line element

ds = B(r )dt—+ A(r)dr +r d0 +r sin (8)dg

3r p' A ' 3r p'8' 6r p" r p'8'
AB A AB

2r p" 2rp' r p'A'
(5.10)

and

(l) — 2 (I)
Hyy =sin 6j H00 (5.11)

6rp'
H00 —K 2Kr p +Kr pp+ 2Kr p +

(5.7)

Here A and 8 will consist of a classical part and a quan-
tum correction of order A.

We will assume that the matter is described by a per-
fect Quid energy-momentum tensor,

( )H 3KB
[ Irrp —A +2vrppA +3&rp A

2rA

—8p'A +2rp'A' —4rp" A +4p'A
—rp'A'+2rp" A ]+O(A') . (5.12)

T' =pg' +(p+p)u'u The second correction term is found to be
(5.8)

where u' is the four-velocity dx'/d~ of the Quid volume
element, and the proper pressure p and p are functions
only of the radial coordinate r. Since the Quid is static,
we have u"=u =u~=0, and u'=B(r)

From the previous section, we have the expressions for
"'H,&,

' 'H, b, and ' 'H, b in terms of the classical Quid

T,b. Here we give the result of the calculation of those
expressions (this is a lengthy calculation, but is simpler
than calculating the quadratic curvature tensor expres-
sions directly; in addition, because the perturbative con-
straints have been used, no higher than second deriva-
tives appear in the result).

One finds, for the first correction term,

12p '
3p '8'

Hrr K 2Kp A +KpAp+ 2KAp + +

Kp A +Kp Ap— 8' 8'
( 3/2)p 'B '

8
(1/2)p' A '

A

I I

+ +p" +O(A'), (5.13)

(1/2)r p'B' rp' r p"
AB

+O(fi),

(5.14)

H —K Kr p +Kr pp + r ' (1/2)r 'A'p
00

+o(x),
r 8 (5.9) and

' 'H =sin O' 'H
yy

—Sln 00 (5.15)

(2) p 2pB' 2pB' (1/2)pA'B' (1/2)pA'B' (1/2)pB' (1/2)pB' (1/2)p'B'
(rA) (rA) A A (AB) (AB) A

2p'B ( 1/2)p'B A ' pB" pB" p "B
(rA) A~ A A A

(5.16)

' 'H„„= ,'~ p(p+2p)A+—O(A'),

"'H„=(r'/A ) "'H„„+O(X),
' 'H&&=sin O' 'H00,

(5.17)

(5.18)

(5.19)

For the third correction term, which appears in place
of ' 'H,

& in a conformally Hat space-time, the final result
is much simpler:

' 'H„= ,'a p B+O(A') . — (5.20)

b, T,b =kg,b+(bp+bp)u, ub+O(A' ), (5.21)

where u, is as before,

It is interesting that ' 'H, b is in the form of a perfect fIuid
energy-momentum tensor. It can be absorbed into the
change~ Tab ~ TaI, +6Tab & with

and b,p = ,'a3fi~p(p+—2—p), (5.22)
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and

Ap = —
—,
' a3A'~p (5.23)

Therefore, in the case of a conformally flat metric, the
cz3A' 'H, b quantum correction term in the Einstein equa-
tion can be absorbed into a redefinition of the pressure
and density:

and

p ~p —
—,'a3A'~p(p+2p )+O(vari ), (5.24)

p ~p —
3

a3A'sp +0 ( fi ) . (5.25)

The semiclassical Einstein equations with quantum
corrections in general have the form

b 2g bR +1~ H b+~2~ H b

Qat space-times, the vacuum stress-energy tensor is deter-
mined by the trace anomaly [26,22]. The vacuum stress-
energy tensor of these fields is a linear combination of
A'"H, b and A' 'H, b. We will suppose that there is no
additional Casimir energy contribution in this space-time.

Therefore, the state-dependent part of the vacuum ex-
pectation value of the quantum stress tensor is zero for
massless conformally invariant free fields propagating on
this interior metric. The only effect of the quantum fields
in their vacuum state is to give rise, through the confor-
mal trace anomaly, to the a& and a3 state-independent
correction terms in the Einstein equations. Thus, in the
interior of the fluid sphere, one has the complete equa-
tions which must be integrated.

The classical interior Schwarzschild solution has the
form of Eq. (5.7) with (for r (R)

+a3fi' 'H, b+O(fi )=irV', i, , (5.26)
and

A,~(r)=(1—2GMr IR ) (5.27)

where T,b includes classical matter contributions and the
lowest-order state-dependent part of the expectation
value of quantum matter fields. The state-independent
local quantum corrections of order A' are included in the
H terms on the left-hand side. It is understood that we
may set F3=0, except when the metric is conformally
flat. In the latter case, it is understood that F2=0, since
the first two corrections are then proportional to one
another. In the formally flat case, the a3 term arises from
the state-dependent part of the quantum stress energy.

With the expressions given above for the H's, the Ein-
stein equations are now easily written down for the gen-
eral spherically symmetric metric. Only the state-
dependent part of the expectation value of the quantum
stress-energy tensor requires further work to calculate,
but this will not increase the order of the highest metric
derivative in most cases, so that the perturbative con-
straints have succeeded in reducing the semiclassical Ein-
stein equations with quantum corrections to second-order
equations having the standard initial data. These equa-
tions are thus in suitable form for numerical integration.
'We will not carry that out here, but plan to return to it in
a later paper. However, one spherically symmetric case
where further simplification occurs will be discussed
briefly in the next section.

B. Fluid sphere of constant proper classical density

Consider a fluid sphere which at the classical level has
constant proper density. Let us suppose that, in addition
to the classical Quid, only massless conformally
invariant-free fields, such as the photon and massless neu-
trino, are present.

The classical interior solution for a fluid sphere of uni-
form proper density was found by Schwarzschild in 1916
[25]. It is known that the Weyl tensor of this metric is
zero, so that it is conformally Qat.

Because this space-time is static and has no event ho-
rizons, we may suppose that the quantum fields are in a
well-defined vacuum state. It has been shown that for
conformally invariant massless free fields in conformally

3M
P 4~R

(5.29)

The pressure p is

p(r)

3M (1—2GM/R )' —(1 2GMr IR )'—
4nR(1 2G.Mr IR —)'~ —3(1 2GM/R )'~—

(5.30)
For r )R, this interior metric joins with the classical
Schwarzschild exterior solution of mass M, and zero den-
sity and pressure. It is known that of all stable Quid
spheres having a given mass M and radius R, the
Schwarzschild uniform density sphere has the smallest
central pressure. For the pressure not to become infinite
somewhere inside the object, it is necessary that
GM ( 4R. This means that the radius of the static fluid
sphere must be larger than the corresponding
Schwarzschild black hole radius. Quantum corrections
may possibly change the relationship between these two
radii for suSciently small Quid spheres.

From the previous section, we have the expressions for
(&)H, b and H, b in terms of the classical fluids p and p.(3)

These are given for the constant density sphere by Eqs.
(5.29) and (5.30). The resulting semiclassical Einstein
equations are of second order and are ready for numerical
or analytic solution. We will carry this further in a later
paper.

VI. CONCLUSION

We have considered first-order semiclassical quantum
corrections to a variety of classical solutions to the Ein-
stein gravitational field equations. We have used pertur-
bative constraints to obtain the reduced semiclassical

g,&(r)= '[3(1—2GM/R )'~ —(1 2GMr IR—)' ] .

(5.28)

The classical energy-momentum tensor corresponding to
this solution is that of Eq. (5.8), with a constant proper
density:
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Einstein equations for Friedmann-Robertson-Walker
cosmologies, for Friedmann-Lema~tre cosmologies, for
the gravitational fields of static spherically symmetric
Quid bodies, and for the general, conformally Bat metric
in terms of its conformal factor. The reduced equations
we obtained do not contain higher than second deriva-
tives, and do not exhibit runaway solutions or instabilities
of the original fourth-order equations. They have the
same physical content as the fourth-order equations, but
yield only physically relevant solutions. Analytic and nu-
merical solutions to these semiclassical equations were
found in the cosmological cases. Although in most cases
the semiclassical corrections play only a small role far
from the Planck scale, there are some examples in which
semiclassical quantum corrections cause significant devia-
tion, or even qualitatively different behavior, from the
classical solution.

In the case of spatially Oat, radiation-dominated
Friedmann-Robertson-Walker solutions, the corrections
either strengthen or weaken the singular behavior at ear-
ly times, in a regime where the perturbative corrections
are valid (the perturbative validity does break down,
however, before the time of the classical singularity itself
can be reached). The corrections at late times become
vanishingly small. In the Friedmann-Lemaitre "bounce"
or "turn-around" solutions, quantum corrections can
cause classical and semiclassical models which have the
same initial conditions to have significantly different radii
at late times. In the case of the "maximal hesitation"
Einstein universe, the semiclassical corrections can cause
large deviations and even qualitatively different behavior
from the corresponding classical solution.

For Auid spheres, we have given the explicit first-order
quantum corrections as reduced field equations for the
general case, and have discussed the constant classical
density Quid in further detail. In future work, we intend
to study solutions of these equations. For small Quid
spheres the corrections may significantly alter fundamen-
tal relations, such as the classical theorem which requires
the radius of a static sphere of Quid to be larger than the
radius of the Schwarzschild black hole having the same
mass.
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APPENDIX A: INTEGRATION FACTOR

In several instances in this paper, the semiclassical
solutions are calculated iteratively, from an equation of
motion of the form

a, (t)= + f dt'p(t')f, (ap(t')),1 1

cpt pt (A3)

where c is an arbitrary constant of integration and p(t) is
an integrating factor given by

p(t)=exp —f dt'fp(ap(t')) (A4)

Because Eq. (A 1) has no explicit dependence on t, we
know that there is a one-parameter family of solutions,
a, (t )=a(t tp), to—Eq. (Al), parametrized by the initial

0
time tp. The freedom to choose the constant c in Eq. (A3)
must correspond to the freedom to change this initial
time by to~~=to+At&. By making this shift, and ex-
panding in powers of A, we can determine the integrating
factor without the need of integrating Eq. (A4) explicitly:

ap(t —tp)~ a(pt
—tp At( )—

=ap(t tp) —irit, ap—(t —tp) . (A5)

Comparing this to Eq. (A3) reveals that [cp(t)]= —t, ap(t tp), permitt—ing us to rewrite Eq. (A3) as

, f i(ap(t ))
a, (t ) =a, (t )f dt' —t, a, (t )+O(A'),

ap(t')
(A6)

where t, is an arbitrary parameter with dimensions of
time, and the shift of initial time in Eq. (A5) induces only
a higher-order [O(iri)] change in the integrand in Eq.
(A6).

APPENDIX 8: UNIQUENESS
OF PERTURBATIVE SOLUTIONS

For a general perturbative field equation of the form

Fp(q, q, q)+eF, (q, q, q, q, q")+. . . =O(e" ), (B1)

where e is the formal perturbative expansion parameter
(e=iIi for semiclassical gravity) and q represents all the
configuration space variables, there is some ambiguity in
the way a perturbative solution

q =qp(t )+eq, (t )+ +e"q„(t)+O(e"+') (B2)

ap+iria, =fp(ap)+iria, fp(ap)+h'f, (ap)+O(A'2),

which leads to the series of equations

h: ap(t)=fp(ap(t)),
h': a, (t)= a, (t)f p(ap(t))+f, (ap(t)) .

The first equation is typically a nonlinear equation which
might be solved in a variety of ways. The second is a
first-order linear inhomogeneous equation in a, (t ) (once
the classical solution ap has been determined), for which
a general solution can be always found in the form

a(t ) =fp(a(t ))+If,(a(t ))+O(iri ),
and an ansatz of

(A 1) may be expanded in the same expansion parameter. For
example, defining qo as the quantity that satisfies the
lowest-order field equation,

a =ap+Aa, +O(fi ) . (A2) Fp(qp qp qp )=O(e) (B3)

Inserting Eq. (A2) into Eq. (Al) and expanding in powers
of A produces

does not unambiguously determine qo, because we can
shift by any quantity O(e), i.e., qp~qp+e5q, and the
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+eF, (q, q, q, q, q"') =O(e ), etc. (83a)

Despite this ambiguity in breaking up the solution into
terms that solve the field equations order by order, there
is no ambiguity in the sum of all such terms. This can be
seen by positing an additional requirement that the indi-
vidual terms of the solution be explicitly independent of
the perturbative expansion parameter:

new quantity will still satisfy Eq. (83), only requiring an
accompanying shift in the higher-order terms in the ex-
pansion of the solution, i.e., q& ~q& —5q. Similar ambi-
guity exists for the field equations of higher-order terms:

r)F, (q, q, q) &F (q, q, q)

Bq Bq

where the 6&q~ are arbitrary O(e ) functions to be chosen
at one's convenience.

APPENDIX C:
ANALYTIC SEMICLASSICAL SOLUTION

FOR TURN-AROUND OR BOUNCE UNIVERSE

The semiclassical corrections to the turn-around or
bounce universe were calculated numerically in Sec.
III C 1, but they can also be calculated analytically. The
classical turn-around solution is a solution to Eq. (3.11),
for positive cosmological constant (A )0), spatially
closed slicing (k = 1), and sufliciently small radiation den-
sity:

aq, =O(e"+' '), i =0, . . . , n .
E

(84)
4A&pa o0& &1.

9
(Cl)

That this requirement can always be met can be easily
seen as follows. Instead of solving Eq. (83), solve the re-
lated equation

F (oq oq Oq
)o=O(e" ') .

Any solution to (85) is also a solution to (83), but there is
no ambiguity to O(e"). Similarly solve the analogs of Eq.
(83a) to the highest order allowed

The classical solution is

a,i
= ——(q cosh[2&A/3t ]+1),1 3

where

4 1/2
4Avpa oq—= 1—

9

(C2)

(C3)

qo qo+ e6,qo+ e 62qo+ . +e"6„qo,

q) q) 5)qo ' ' E' 5 qo

+E5iq)+ ' +6 6~ iqi

q2 ~q2 —5,q &

—. —e" '6„q,

+@5,q2+ - +t-" '6„2q2, etc. , (87)

&F0(q, q, q ) &Fo(q, q, q ) &fo(q, q, q )
q)+ q) + q)

Bq Bq Bq

+eF, (q, q, q, q , q") =O(e'" '), etc. (86)

This process uniquely defines each of the terms in Eq.
(82), and therefore also the sum [to O(e")].

Despite the ability to fix the expansion in this manner,
it is often to our advantage to use the freedom to make
order-by-order shifts in the terms q, of the solution, as
done in Appendix A. Solutions with different e depen-
dencies can be obtained by adding e-dependent terms: 24

A 2 Pao 2 2+(x3 —a „+ a,& a, ~3 ' 3
(C4)

This is a first-order, linear, inhomogeneous equation in
a&(t), and it may be solved by standard methods shown
in Appendix A. The integrations are tedious, but easily
within the grasp of a good symbolic integration software
package. The result, up to the initial time ambiguity
dealt with in Appendix A, is

and 0&q &1.
The ansatz a =a,&+fia&+O(fi ), when inserted into

Eq. (3.11) and expanded in powers of A', gives, as the
order-A equation,

A 2@pa o
O(fi) =2a &ad

—2—a &a,~+ a &a,&3 3

8e&A~pao4

3
a,&

'(/1 —
q sinh[2&A/3t ]—cosh[2+A/3t ]—q

q cosh[2&A/3t ]+ 1

a
&
=a&&6A(q —

q ')cosh[2VA/3t ](q cosh[2&A/3t ]+1)

&3A 3 sinh[2+A/3t ]
24 Q I —q2

+2&A/3t sinh[2V'A/3t ]+—(5q cosh[2&A/3t ]
—1)——1 1 1 —

q

q q q cosh[2&A/3t]+ I

X(q cosh[2&A/3t]+1) ' +O(A') . (C5)

The final result for a(t ) is given by inserting Eqs. (C2) and (C5) into the perturbative ansatz, a =a,
&

+fia, + O(A' ).
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