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Black Hole Evaporation and 
Higher-Derivative Gravity I 

Robert C. Myers 2 and Jonathan Z. Simon 3 

We examine the role which higher-derivative gravity interactions may play in 
black hole evaporation. The thermodynamic properties of black holes in 
Lovelock gravity are described. In certain cases, the specific heat of a black hole 
becomes positive at a small mass. This results in an infinite lifetime for the black 
hole (and also allows it to achieve stable equilibrium with a thermal environ- 
ment). Thus no conflict with unitary time evolution would arise in such theories. 

One of the most celebrated predictions of quantum field theory in curved 
space is the Hawking effect [ 1 ], which results in the quantum instability of 
black holes. An external observer detects thermal radiation arising from a 
black hole with a temperature proportional to the surface gravity, •, 

h~ hc 3 
k B T =  

2re - 8r~G M 

The second equality holds for an uncharged spherically symmetric black 
hole of mass M in four dimensions. The specific heat of such a black hole is 
negative, so that the temperature rises as it loses energy. If this process con- 
tinues indefinitely, the black hole would radiate away its entire mass in a 
finite amount  of time. Such an event would be a disaster for quantum 
mechanics resulting in incoherence of the wave function, as follows. Begin- 
ning with an initial pure quantum state, it remains a pure quantum state in 
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the future in the presence of the black hole. The observables describing the 
future state, though, are divided into two sets, those inside the horizon and 
those outside. An external observer makes measurements only of the latter, 
and so, observes a mixed state as thermal radiation must be. His state is 
described by the density matrix obtained by integrating over all internal 
observables. In principle the black hole acts as a reservoir of information 
which allows for the reconstruction of the full quantum state. If the black 
hole evaporates completely, though, this information is irrevocably lost. 
Hence a pure quantum state has evolved into a mixed state, which is a 
clear violation of one of the basic tenets of quantum theory, namely, 
unitary time evolution. 

Exactly what happens in the final moments of evaporation is still a 
very open question, however. The relation of the temperature and the mass 
given above is derived for an explicit solution of Einstein's equations. These 
equations are an effective low-energy theory valid for small curvatures. One 
sees that the gravitational action will be modified by higher-derivative 
interactions in attempts to quantize gravity perturbatively as a field theory 
[2] or in the low-energy limit of string theory [3]. The latter prompted a 
recent spate of interest in Lovelock gravities. A Lovelock lagrangian is a 
sum of dimensionally extended Euler densities [4], 

k 

Y Cm m 
m = 0  

where cm are arbitrary constants, and ~,, is the Euler density of a 2m- 
dimensional manifold 

~ 7  m = ~ - - m A a l b l  . . .  ambm ~ C l d l  R C m d , ,  
"~ t " c l d l . . . c m d m ~ ' ~  a lb l  " " " ambm 

The generalized delta function ,Sal--'bm is totally antisymmetric in both sets 
v C l " "d in  

of indices. If only cl is nonvanishing, one recovers Einstein's theory. When 
perturbing about flat space, the Lovelock theories a/e ghost-free [5]. Exact 
solutions describing black holes have been found for these theories ]-6, 7]. 
We use the thermodynamics of these black holes as a model for the 
possible effects of higher-derivative interactions in the strong gravitational 
fields present in the final stages of black hole evaporation. Because the 
higher-derivative interactions are all exact divergences in four dimensions, 
we must consider space-times with D ~> 5. Since most candidates for the 
quantum theory of gravity involve more than four dimensions, this is not a 
drawback. 

In many cases, the new solutions are qualitatively similar to the 
Schwarzschild black hole in higher dimensions [8]. However, certain 
instances are sufficiently different to warrant special attention. In par- 
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ticular, there are classes of solutions which give rise to thermodynamically 
stable black holes, that is, their specific heat is positive. Furthermore,  the 
rate of evaporation slows to give these black holes an infinite lifetime. Since 
the black holes never vanish, none of the incoming quantum mechanical 
information is completely lost. Thus the conflict with unitary time 
evolution is very neatly avoided in these theories. 

The solutions with positive specific heat may be divided into two 
categories [9J. The first arises in 2m + 1 dimensions for a theory including 
up to s In this case the temperature goes smoothly to zero as the size of 
the horizon shrinks to zero, and the mass approaches some finite value. 
There is a curvature singularity at r = 0, and so at the minimum mass, the 
solution would correspond to a naked singularity. This limit is not reached 
in a finite time, however, since the temperature approaches zero too 
rapidly. The second category yields a remnant  black hole similar to the 
familiar cases of extreme charged or spinning black holes. This behavior 
can occur only for theories including at least six derivative interactions (i.e., 
including ~m with m ~> 3). In these theories the solutions may have more 
than one horizon, and for certain critical values of the mass two horizons 
coalesce to form a degenerate zero-temperature horizon. We explicitly 
investigate the six-derivative theory and find examples of both kinds of 
behavior. 

Wheeler found spherically symmetric solutions for Lovelock gravity of 
the form [7]  

ds 2 = _ f 2  dt 2 _+_f-2 dr 2 _+_ r 2 d Q 2 _ 2  

where ds 2 2 is a line element on the unit ( D -  2)-sphere, and 

f 2  = 1 - r 2 F ( r )  

F is determined by solving for the real roots of a polynomial equation. For 
the six-derivative theory, 

co 
P ( F )  = F +  a F  2 + b F  3 - z ) -  1 

r 

where a = ( c 2 / c l ) ( D  - -  3)(D - 4), b = ( c 3 / c  1 ) ( D  - 3)(D - 4)(D - 5)(D - 6), 
and ~o is proport ional  to the mass of the black hole. For  simplicity we have 
set c0 = 0, which yields asymptotically fiat solutions. The factors of (D - n) 
express the fact that ~e m makes no contribution for D ~< 2m. For  D = 4, 
a = b = 0, and f 2  = 1 - ( o / r ) ,  recovering the standard Schwarzschild metric 
with 09 = 2 G M / c  2. 
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For D i> 7, the cubic equation may be solved for F in closed form. For 
a < 0 (which is the case of interest) 

f2  = 1 - ~-~ [A + (A 2 + 9) 1/2] 1/3 ..[_ [ A  - -  (A 2 + B) 1/2] 1/3 + 

where 

A_- + 

C 3 
B = ~--~ (3 - C) 3 

and C=a2/b. When (A2+B) becomes negative the metric is complex, 
indicating the presence of a singularity at (A2+ B ) =  0. In order to avoid 
such singularities at finite radius, we consider theories with 

a 2 

O < - f f < 3  

These singularities need not be naked, but a careful analysis reveals that 
degenerate horizons will not occur in those theories. The positions of the 
horizons are given by f 2 =  0. This is most simply expressed by 

r~-  3 + ar~- 5 + br~ - - 7  = (D 

The restriction on a2/b clearly requires b > 0, and so the above equation 
will have more than one solution only if a < 0. 

The temperature of the horizon of a black hole is determined from the 
periodicity of the metric in imaginary time. To define quantum field 
propagators in these black hole backgrounds, one rotates to Euclidean 
time t--* it. In order to produce a smooth Euclidean manifold, the 
Euclidean time must be identified with a certain periodicity //. This 
periodicity in imaginary time then appears in the propagators so defined 
and may be interpreted as indicating that the fields are in equilibrium with 
a heat bath of temperature T=h/(kBfl) [10, 11]. One finds that the 
periodicity is 

27~ 
f l = - -  /s 

where • is the surface gravity of the horizon. 
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For the given metrics, the temperature is 

h o s  2 
T = 41rk~ ~r r = rh 

h 1 ( D - 3 )  4 r h + a ( D -  5) r ] + b ( D - 7 )  
r 4 2 &zkB rh h + 2aG + 3b 

Finding instances of zero-temperature horizons then reduces to solving the 
quadratic polynomial appearing in the numerator. In D = 7, we find T =  0 
for r h = 0  and rh=  ( - a / 2 )  1/2. The only other zero-temperature solutions 
occur in eight dimensions for negative a and 

20 a 2 
- r  3 

A degenerate horizon then occurs at 

r 2 = 3 1 ~ I 1  + (  1 -  - 9 -~ j2 0  b'~ 1/2]j 
The lower sign above is actually not of interest since it arises when the 
inner two of three horizons coalesce. 

Seven dimensions and positive a provide an example of the first type 
of stability. There is only a single horizon which shrinks to zero as co --+ b. 
The rate of mass loss is given by the luminosity L ~ agT o, where d is the 
area of the horizon. [Note  that ag has dimensions (length)D-2.] For  a 
small horizon radius, T ~ r h ~  (co--b) 1/2 and so 

do) __ ,~  5T7 - ( c o -  b) 6 
dt - rh  

This may be integrated to yield 

3 t  ~ (co - b ) - 5  I~0 ~ oo 

Thus the black hole requires an infinite amount of time to evaporate down 
to co = b, beginning with any mass where the temperature is finite. 

An instance of the second stable category is found for D = 7 when 
a < 0. There are two horizons which coalesce for co = coc----b- (a2/4). As co 
approaches coc, the horizon area remains finite, while T ~  (co -  coc) 1/2. The 
rate of energy loss is now 

do) 
a--7 ~ - ( c o  - coc)7/2 
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which again results in an infinite time to reach the min imum mass. The 
eight-dimensional zero- temperature  cases also fall in this class and produce 
similar results. 

In conclusion, we have explicitly demonst ra ted  that  black holes are 
(essentially) stable in certain higher-derivative theories of gravity. These 
black holes act as reservoirs of  quan tum mechanical  information for all 
time, and hence no conflict with unitary time evolution arises. We suggest, 
then, that  the problems, which qua n t um  gravity faces due to black hole 
evaporat ion,  may  be solved within the context  of higher-derivative inter- 
actions. 
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