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The thermodynamic properties of black holes in Lovelock gravity are examined. In particular,
the case of the Einstein Lagrangian plus the four-dimensional Euler density is discussed in detail. In
five dimensions, one finds that the specific heat of a black hole becomes positive at small mass, al-
lowing the black hole to achieve stable equilibrium with its environment and giving it an infinite
lifetime. This behavior is not universal, however, but it always occurs in 2k+1 dimensions for a
Lovelock theory including the 2k-dimensional Euler density. For theories including six-derivative
or higher-order interactions, black holes with degenerate zero-temperature horizons are also possi-
ble.

I. INTRODUCTION

The Hawking effect' was a remarkable discovery in the
study of quantum field theory in curved space-times. A
black hole appears to emit thermal radiation with a tern-
perature of

T=
2m 8mGM

'

where ~ is the surface gravity. The second equality holds
for a spherically symmetric black hole in four dimen-
sions, where G is Newton's constant and M is the mass of
the black hole. (We have set A'=c =k~ =1.) The emitted
radiation is a thermal ensemble which must be described
by a density matrix from the point of view of an observer
located outside of the black hole. Naively a dilemma
may appear to arise since, to the observer, the incoming
pure quantum state appears to evolve into a mixed state.
However, for each external radiation state there is a cor-
responding internal state describing the quantum fields
inside of the event horizon, and so the joint system is still
described by a well-defined wave function. Unfortunately
quantum gravity faces a true paradox if the Hawking ra-
diation continues until the black hole finally vanishes,
having radiated away its entire mass. In this case the in-
coming pure state has actually become a mixed state,
since the potential reservoir of information about internal
states is lost. This scenario violates a basic principle of
quantum field theory: the time evolution of a physical
system should be described by a unitary operator, the
Hamiltonian. It is reasonable though to expect that the
relation between the temperature and mass of a black
hole given in Eq. (1) will be modified at small masses.
The paradox might be avoided if in fact the black-hole
temperature begins decreasing and approaches zero for
small mass. The black-hole evolution might then end
with a zero-temperature soliton, where some of the in-
coming quantum-mechanical information would continue
to reside.

kX=gcL
m=0

(2a)

where c is an arbitrary constant, and X is the Euler
density of a 2m-dimensional manifold:
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Here, the generalized 5 function 5, . . . d is totally an-

1 m

tisymmetric in both sets of indices. We set Xo= 1 and,
hence, co is proportional to the cosmological constant.
The Einstein Lagrangian is a special case of Eq. (2) for
which only c, is nonvanishing. These Lagrangians are
exceptional in that the resulting equations of motion con-
tain no more than second derivatives of the metric.
They have also been shown to be free of ghosts when ex-
panding about flat space, evading any problems with
unitarity. Exact solutions describing black holes have
also been found for these theories. In this paper we
will study the thermodynamics of these black-hole solu-
tions as a model for the possible efFects of higher-
derivative interactions in strong gravitational fields.
References 10 and 11 present related material in the con-

The relation between the temperature and the mass
given in Eq. (1) is derived for an explicit solution of
Einstein's equations. One should expect that the Einstein
action is only an effective gravitational action valid for
small curvatures or low energies. One sees that the ac-
tion will be modified by higher-derivative interactions in
any attempt to perturbatively quantize gravity as a field
theory. Such terms also arise in the effective low-energy
actions of string theories. Higher-derivative gravity
theories have also been studied in their own right since in

many cases they display the attractive features of renor-
malizability and asymptotic freedom. " One higher-
derivative theory which has attracted a great deal of at-
tention recently is Lovelock gravity. A Lovelock La-
grangian is the sum of dimensionally extended Euler den-
sities
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text of string theory. In four dimensions, Xz is a total
derivative while the higher-order interactions (i.e., X.
with m &2) are simply zero. Therefore, we must concern
ourselves here with space-times for which D & 5. This is
not a drawback since most recent attempts to construct a
quantum theory of gravity have involved space-time di-
mensions greater than four.

The paper is organized as follows. In Sec. II we begin
by examining the simplest nontrivial example of
Lovelock gravity, the Einstein action plus the four-
dimensional Euler character. Spherically symmetric vac-
uum solutions have been found independently by
Boulware and Deser, and Wheeler. A careful examina-
tion of the global topology of these solutions is made, and

some new cases without naked singularities are found.
The thermodynamic properties of all of the nonsingular
cases are explored. In Sec. III a discussion covering more
general Lovelock actions is presented, and Sec. IU gives
the concluding discussion.

II. THE FOUR-DERIVATIVE THEORY

The simplest higher-derivative Lovelock Lagrangian
consists of the Einstein term plus the four-dimensional
Gauss-Bonnet density. The recent interest in this theory
arose because it appears as the low-energy effective action
of some string theories. The action is

I= fd x V —g R+ {Rx„xg —x 4R', qR—'~+8 ) + 1 d 'x x h [K+).( )],1 D

where A. is a coupling constant of dimension (length) .
Presumably A, is small compared to present empirical
scales, so that one recovers Einstein gravity in the low-

energy limit (i.e., for sinall curvature). The higher-order
surface terms indicated by the ellipses are given in Ref.
12, but will be of no consequence in the following.

Spherically symmetric vacuum solutions for this theory
are given by '

q(r)=rD '+ rD-——tv . -D —3 ~ D —5

2
(5)

Deriving q (r}=0from f =0 involved squaring an inter-
mediate equation, and therefore the roots of q(r) must
also satisfy

sitions of the horizons may be determined as the real
roots of the polynomial q (r = r], ) =0, where

ds = f dt +f —dr +r dQD z, (3) e(r], +X)(0 (6)

where d Qz is a line element on the unit ¹phere, and
' 1/2

fz=l+ 1+a 1+—r 2COX

r

for a horizon to actually be present.
If e= —1, the metric is asymptotically fiat. This is a

case which has already been explored in some detail. '

For large r, f becomes

dv+ dt+f dr . —— (4)

Radial lines of constant v+(v ) correspond to infalling
(outgoing) null geodesics. Given in terms of (u+, r}, the
metric is singularity-free on the future horizon(s), while
the (u, r) coordinates provide a regular extension across
the past horizon(s). (Appendix A of the first paper in
Ref. 8 provides an alternative regular extension. ) The po-

Here, A, =A,(D —3)(D —4) and io is an integration con-
stant with dimensions of (length), related to the mass
of the black hole. The constant @=+1 appears because

f is determined by solving a quadratic equation.
priori, one may consider )'](, and cv with either positive or
negative values, but for inany values of e, A, , and co, the
solutions have naked singularities. Examining the com-
ponents of the Riemann tensor in an orthonormal frame
reveals curvature singularities at r=0, but also at
r '= —2coA, if cok &0. We will determine the ranges of
parameters for which these singularities are surrounded
by a horizon.

As expected f =0 is only a coordinate singularity, sig-
naling the presence of an event horizon. One easily ex-
tends the (t, r) coordinate patch with the null coordinates

where A]v i 2n ~ /I (N/——2) is the area of a unit
(N —1)-sphere. For e= —1, Eq. (6) becomes

lg) —k . (8)

This is trivially satisfied if A, & 0. In this case, the polyno-
mial q(r) given in Eq. (5) increases monotonically for
positive r beginning from —cv (for D & 5) at r=0. There-
fore, q has one and only one zero with rI, & 0 if and only if
gu & 0. For the case D=5, however, q (r =0)=(A l2) —cv,

and, hence, one must have co ~ A,/2 for a horizon to exist.
For A, (0, examininIg q shows that one and only one hor-
izon occurs if tv&

~

A,
~

' ' l2. In this case, r], satisfies

Eq. (8) as well as occurring outside of the singularity at
r '&2'

~

R
~

. Therefore for e= —1 and both signs of
k, there is the possibility that a single horizon occurs en-

and Eq. (3) takes the form of the Schwarzschild metric
with mass'

(D —2)AD

16~6
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D —3
4

D —5 k
D —3 2

fh +A,
(9)

where ri, is implicitly given by q(ri, )=0. Using Eq. (5)
[as well as Eq. (8) for A, &0] to show that Bri, /Bco is al-

ways positive in the cases of interest, one can show that
BT/r}co is strictly negative for D&5 (just as it is for a
Pchwarzschild black hole). For D= 5, Eq. (9) simplifies to

' 1/2

closing a spacelike singularity. The global topology of
these rnanifolds is then identical to that of a
Schwarzschild black hole as illustrated by the Penrose di-
agram in Fig. 1.

The temperature of the horizon of a black hole is cal-
culated using the periodicity in imaginary time of the
metric. To define quantum-field propagators in these
black-hole backgrounds, one rotates to Euclidean time
t~i~. In order to produce a smooth Euclidean rnani-
fold, the Euclidean time must be identified with a certain
periodicity P. This periodicity in imaginary time will
then appear in the propagator so defined and may be in-
terpreted as indicating the fields are in a canonical ensem-
ble in equilibrium with a heat bath of temperature
T = I/P (Refs. 14 and 15). As in the usual Einstein case
then, one finds that the periodicity is

2'
7

K

where ~ is the surface gravity of the horizon. ' For the
present metric, one finds

future singularity
event horizon

(D —2) Aii(E)= co=M .
16mG

Thus (E ) is precisely equal to the mass (7) determined
from the asymptotic behavior of the metric. This result
should not be surprising in light of Sorkin's expression
for the mass' where the variation of the action (12) can
be related to an asymptotic integral involving a timelike
Killing vector. The entropy (11) is then

D —2 D 2
1

D —2
(13)

past singularity

FIG. 1. The Penrose diagram for a black hole with a single
nondegenerate horizon. This diagram is similar to that for the
Schwarzschild solution in four dimensions (for example, see
Ref. 19), but now each point represents a (D —2)-sphere for a
black hole in D dimensions.

T= rh

27r r~ +g 27r
(10)

In this case with A, &0,
~

R
~

is a lower bound on the posi-
tion of the horizon, and one finds then that dT/r}co is al-
ways negative. On the other hand, for R&0, BT/Bco is
zero at co=3K/2 and is positive (negative) for smaller
(larger) values of co.

To construct our candidate for the entropy of these
black holes, we use the same thermodynamic identities
which are applied in Einstein gravity. ' The action of the
Euclideanized manifold I is identified with the free ener-

gy multiplied by P, and then the entropy follows as

S =13(E) I=13 I . — —
a

(11)

D —5

16(D —4)m.G 2
8vrri, , (12)—

and one finds

Here (F. ) =dl/aP is the thermodynamic energy of the
system. We stress that this is a tentative definition since
we have not proven a second law of black-hole mechanics
(i.e., 5S &0) for this theory. It is a reasonable definition
though, since entropy is automatically conjugate to tern-
perature. For e= —1, the Euclideanized action is

Note that the last factor modifies the usual Einstein grav-
ity result of S =A /4G. For R & 0 this expression is man-
ifestly non-negative, and it always increases with co (using
Bri, /Bc@&0). For A, &0, the entropy again always in-
creases with co but can be negative for small rh. The
minimum entropy occurs as ri, ~ P ~, at which point the
horizon vanishes exposing a naked singularity. (Further
discussion of the entropy is presented in Sec. IV.)

We now consider the solutions with a=+1. In this
case, the metric (3) is no longer asymptotically fiat, as can
be seen by examining f for r '»2

~

coX ~:

2

f =1+ +2 2f co

The metric approaches a Schwarzschild —(anti-)de Sitter
metric with a cosmological constant proportional to

' and a gravitational mass proportional to —co. In
the present theory, the inertial mass is actually still pro-
portiona1 to co because the graviton becomes a ghost for
e =+ 1 as discussed in Ref. 7.

The restriction iinposed by Eq. (6) is now ri, & —k, and
so only the theory with X&0 will have horizons. The
background cosmological constant in Eq. (14) is positive
yielding a de Sitter space. The positions of the horizons
are bounded above, ri, &

~

R
~

. They are still determined
by q(rs)=0 [see Eq. (5)], and so we begin by giving a
qualitative description of the behavior of this function for
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singularity

cosmological
horizon

singularity degenerate
horizon

FIG. 2. The Penrose diagram for a solution with a single
nondegenerate cosmological horizon and a curved de Sitter
background. This diagram is like that of the Schwarzschild —de
Sitter solution with negative mass in four dimensions.

FIG. 4. The Penrose diagram for a solution with a single de-
generate cosmological horizon and a curved de Sitter back-
ground. This diagram is like that of the Schwarzschild —de Sit-
ter solution with M =&A/3 in four dimensions. The point la-

beled B on the horizon is an infinite proper distance from any
point a finite coordinate distance away in the adjacent exterior
region. Note that there is a spacelike infinity for timelike and
null lines in either the past (as illustrated) or the future.

r & 0 and D & 5. At r=0, q = —co and its slope is zero (or
negative for D=6). As r begins to increase, q decreases
to a minimum at

singularity
event horizon +

"min D 3

As r increases beyond r;„, q increases monotonically.
Depending on the value of co, there are several regimes to
the solutions each with different topologies.

If co is positive, the horizon must occur at
ri, '&2'

~

A,
~

in order to surround the singularity. This
in turn requires that co & P ~

' ' /2. For
0 & co &

~
A,

~

' '~ /2, there is a single cosmological hor-
izon enclosing the timelike singularity. The global topol-
ogy is like that of a Schwarzschild-de Sitter space with
negative mass as illustrated in Fig. 2. We identify the
singularity as being naked because the space does not
have a global Cauchy surface. ' For co=0, the solution is
no longer a black hole but simply de Sitter space, with
cosmological horizon at r, = P ~

/2. The temperature of
this horizon is still given by Eq. (9) except that the sign
must be reversed:

Let co, correspond to the value of co for which
q(r;„)=0. One finds that

t, D —3)/2
2 D —5

D —5 D —3 2

For co, ~ co &0, there are two horizons and the global to-
pology is like that of the Schwarzschild —de Sitter space
as illustrated by Fig. 3 (Ref. 20). Equation (9) gives the
temperature of the horizons except that the sign must be
reversed for the outer or cosmological horizon. For
co =co, there is a single degenerate horizon with zero tem-
perature. This space (see Fig. 4) should be regarded as
singular, since the spacelike singularity spans either the
future or past boundary of the manifold. Finally for
co &co„ there are no horizons and there is a naked time-
like singularity at r=0.

For the special case of D=5, one sees from Eq. (5) that
q(0)= —co —

~

A,
~

/2 and q increases monotonically for
increasing positive r. If co is positive, a single horizon will
occur outside of the singularity at r =2'

~

k
~

for
0&co &

~

A,
~

/2. These solutions contain naked singulari-
ties having the global topology illustrated in Fig. 2. Set-
ting co=0, yields de Sitter space as described above. A
single horizon will also occur for —

~

R
~

/2&co&0, and
these spaces have the topology shown in Fig. 2 again.
For co & —

~

k
~

/2, there are no horizons and the spaces
contain naked singularities once again.

III. THK GENERAL CASK

cosmological horizon

FIG. 3. The Penrose diagram for a black-hole solution in a
de Sitter background with two nondegenerate horizons: an
event horizon separating the regions labeled 1 and 2, and a
cosmological horizon between the coordinate patches labeled 2
and 3. This diagram is like that of the Schwarzschild —de Sitter
space in four dimensions with 0&M & &A/3 (for example, see
Ref. 20). This infinite chain of patches may be reduced to a
finite loop by identifying two of the regions labeled 2. s = f dr +f df +r dQ2— (15)

Recall the general Lovelock Lagrangian given in Eq.
(2). In the following we will consider an action which in-
cludes up to Xk, and so the dimension of space-time is
D )2k+1. We will assume that c& &0, so that Einstein
gravity is recovered as a low-energy limit. Wheeler con-
sidered the general Lagrangian (2) and found solutions
which take the form
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where d Qz is a line element on the unit ¹phere, and

f =1 r—F(r} . (16)

F is determined by solving for the real roots of the follow-
ing kth-order polynomial equation:

Now we wish to consider the form of the solution of
Eq. (18). For simplicity we will assume that P'(0)&0.
The analysis is only slightly more complicated if c1 ——0
(see Ref. 8). For large r, the right-hand side of Eq. (18)
and, hence, F are small, and one finds

k

P(F)= X c F
m=0 r

(17) D —1C1r
(20)

where the coelcients are defined in terms of those ap-
pearing in the Lagrangian:

Cp 1

ci (D —1)(D —2)
'

2m

c = g (D n) —form&1.
C n=3

The product of factors (D n)—expresses the fact that X
would not affect the field equations for D &2m. In Eq.
(17) a positive co corresponds to a source with a positive
identical mass, given for an asymptotically flat solution
by Eq. (7).

Considering constant solutions Fo of P(FO)=0, yields
the constant-curvature vacua of the theory. ' The solu-
tion is de Sitter space for Fp )0, while Fp &0 yields an
anti-de Sitter background. In principle one might find
up to k real roots. If co&0 and k is even, it is not clear
that the latter equation has any real roots, in which case
there would be no maximally symmetric vacuum solu-
tions. In this case, the theory may simply be undefined,
but there is also the tantalizing possibility that the vacu-
um is a compactified space-time. ' lf cp ——0, Fp ——0 is al-
ways a solution and so flat space is an allowed vacuum.
The sign of the derivative of P with respect to F at Fp
determines whether or not the graviton is a ghost particle
when perturbing about this background. If P'(Fo)&0,
the graviton is a positive-energy particle while P (Fo ) & 0
indicates that it is a ghost. If one is searching for
black-hole solutions in a specific vacuum, one may define
F =Fp+F, where F now satisfies

k

P(F)=P(FO+F)= g c F
m=1 r

(18)

where P is simply a new kth-order polynomial in F for
which F=O must be a root.

It is useful to examine the nonvanishing components of
the Riemann tensor in an orthonormal frame

(19)

Above i, j, k, and I indicate frame indices corresponding
to directions on the (D —2)-sphere, while t and r indicate
those parallel to dt and dr, respectively. The subscript
comma indicates ordinary differentiation. Glearly a cur-
vature singularity arises when F diverges, but also possi-
bly from divergences in F „or F „, (recall that F and F
only differ by a constant Fo).

One may expand F as a power series in y =r +'. Now
one wishes to extend this solution in towards r=O. As r
decreases, the right-hand side of Eq. (18) varies monoton-
ically towards sgn(co) && ao at r=O. Now on the left-hand
side, one has a kth-order polynomial in F with nonvan-
ishing slope at F=O. Therefore as r decreases, F will be-
gin varying monotonically with the sign appearing in Eq.
(20). Since P is a finite polynomial, F will continue grow-
ing with F „ finite as long as P ' is nonvanishing. If the
latter derivative is always finite, F will only finally diverge
at the origin which indicates the presence of a curvature
singularity as exhibited in Eq. (19). The other possibility
is that at finite radius, one encounters P '=0, in which
case F „will diverge which also results in a curvature
singularity. Such a singularity arose in the four-
derivative theory at r ' = —2cok, when coX & 0.

Given a solution for a specific theory, one must consid-
er whether it contains any horizons to conceal the singu-
larity at the minimum radius. In the metric (15), hor-
izons occur where f =0. A regular extension of the
metric across such a singularity is easily constructed with
the null coordinates given in Eq. (4). Consider the case
where one is able to extend the solution to the origin.
Near that point, one has

' 1/k
F- (D 1)/k

Ck

From Eq. (16) for F0=0, f =1 for large r. Near the ori-
gin

' 1/k
(2k + 1 —D))/2r

c

which diverges at r=O for D )2k+1. Therefore the
solution will have at least one horizon if F is positive (i.e.,
chic, & 0). In fact for odd (even) k, it is possible to have an
odd number of horizons up to k (k —1). Solutions with a
single horizon have the topology of a Schwarzschild
black hole (see Fig. 1), but with more horizons the topol-
ogy becomes arbitrarily complicated unless one identifies
various patches (for example, see Fig. 5). In all cases, the
singularities are spacelike because there are an odd num-
ber of horizons. If F is negative, no horizons occur and
there is a naked timelike singularity at the origin (includ-
ing D =2k+1). For the special case of D =2k+1, f
has a finite limit at the origin, f ~1—(co/2'k )' ". In this
case ~/ck ) 1 yields an odd number of horizans up to
k (k —1}for odd (even) k, and the topology is similar to
that described above for positive F. If 0&co/ck &1, an
even number (including possibly 0) of horizons occur, and
the maximum possible number of horizons given abave is
decreased by 1. In this case the topology may again be
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~irlgularity asymptotically fiat case (i.e., F0=0),

(f ),= 2—rF r—F „= P F—P' (21)

4' 4 4b

3 3a 3b 3

2 2b 2
/& IX

1 1 1b 1' 1 1

2 2 2

3r
4

FIG. 5. (a) A Penrose diagram illustrating the overlap of two
infalling null coordinate patches (denoted by superscripts a and
b) for an asymptotically flat black hole with three nondegen-
erate horizons, as might occur for Lovelock theories with six-
derivative (or higher) interactions. Each such patch covers four
distinct types of (t, r) coordinate patches labeled l, 2, 3, and 4.
(b) A schematic illustration of the most general extension of the
above space. The two null coordinate patches shown in the pre-
vious diagram are again labeled with superscripts a and b. This
extension may be reduced in various ways by identifying regions
which have the same (numerical) label, and have no neighboring
regions in common.

complicated, but the singularities are timelike. In speci-
fying an odd or even number of horizons above, we have
assumed that they are all nondegenerate. Of course de-
generate horizons wi11 also be possible in which case the
parity of the number of horizons may change, but the na-
ture of the singularities remains unchanged.

One should note at this point that our analysis
disagrees with that of Ref. 8. There it is implied that the
monotonic variation of F with r results in f varying
monotonically as well. In fact, this statement is false and
f may have a number of local extreina at finite r In the.

where Eq. (18) and its derivative were used to derive the
second equality. Since in the range of interest P' is
monotonic, the sign of (f ), is controlled by the factor in
the large parentheses above. Since this factor is a kth-
order polynomial in F, one sees that in principle f may
have k local extrema [i.e., (f ) „=0]. A closer examina-
tion taking into account the asymptotic behavior of F dis-
cussed above reveals that the preceding is true for odd k,
but only k —1 extrema are possible if k is even. By ad-
justing co, which controls the overall scale of F, one may
in principle produce the numbers of horizons given in the
previous paragraph. In practice though each theory re-
quires individual consideration. For example, with k=3
if 2'2 & 0 and 3ci & 0'

z, a new extremum (other than that at
r ~ oo which is always present) occurs at finite r in D=7.
Two new extrema arise in D= 8 if the above constraints
as well as ci &9c i/20 are satisfied. Although for D &9
the only extremum in f occurs at r~ ao (Ref. 22). For
larger k, a general analysis becomes intractable, although
numerical analysis would be straightforward given a
theory with a specific set of coef5cients c

For the case in which the solution extends to the origin
but with an asymptotically curved background, the con-
clusions about horizons are similar. In fact for asymptot-
ically anti —de Sitter space (Fo &0), it is easy to show that
the results are the same as for the asymptotically fiat
solutions discussed above. If F&0, no horizons and a
timelike naked singularity occur, while if F& 0, an odd
number of nondegenerate horizons and spacelike singu-
larities result except for the special case D =2k+ 1 and
0 & co/2'„& 1. The conclusions are modified for asymptot-
ic de Sitter space (Fo &0) because f is now negative at
large r. If F&0, an odd number of nondegenerate hor-
izons are possible up to k or k —1 for odd or even k, re-
spectively. A space with a single horizon has the topolo-
gy illustrated in Fig. 2, and hence contains a naked singu-
larity. A space with three horizons has a topology simi-
lar to that of a Kerr —de Sitter black hole with no gaked
singularities. The topology becomes more complicated
with more horizons, but in all cases the singularities are
timelike. If F& 0, an even number (including 0) of nonde-
generate horizons are possible up to k+1 (k) for k odd
(even), and the singularities are spacelike. Of course
D =2k+ 1 and 0&co/ck ~ 1 is again a special case with
timelike singularities and up to k (k —1) horizons for k
odd (even). The topology of the nonsingular spaces here
is the obvious extension of the asymptotically Rat black
holes discussed above by the addition of a cosmological
horizon. The above properties are summarized in Table
I.

The other possibility is that the solution is singular at
finite r where F ap roaches a finite limit P but F „
diverges because P '( ) vanishes. The maximum number
of nonde generate horizons is identical to the cases
enumerated above. Here though for a given Fo and
sgn(F), one cannot a priori determine the parity of the
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TABLE I. Properties of black holes in Lovelock gravity. The results presented here are for theories with J' '&0 and c &&0, and for
which Pisa kth-order polynomial in F. Case A: D &2k+1, or D =2k+1 and co/c, &1. Case B: D =2k+1 and 0&co/c«1.

Asymptotic
geometry

Flat (Fo ——0)
or

Anti —de Sitter (Fo (0)

de Sitter (Fo&0)

'Including zero.

Dimension

Case A

Case B

Case A

Case B

Sign of
F(or coci )

Positive
Negative
Positive
Negative
Positive

Negative
Positive
Negative

Number of
(nondegenerate)

horizons

Odc1

None
Even'
None
Even'
Odd
Odd
Odd

k —2 k —1

k
k —1

k —1

k —1

k+1
k
k
k

Maximum number
of horizons

Even k Odc1 k
Nature of
singularly

Spacelike
Timelike
Timelike
Timelike
Spacelike
Timelike
Timelike
Timelike

number of horizons nor the nature of the singularities.
Finally we wish to briefly consider the temperature of

the horizons. As described in Sec. II the temperature is
given by

1 Bf
2 4

(22}

Of particular interest is the possibility that the tempera-
ture approach zero in the final stages of the evaporation
of the black hole. There are two distinct ways in which
this prospect may be achieved. The first occurs in the
special case D =2k+1 for which the metric is finite at
the origin with f (0}=1—(co/cz)' ". Now as e/c„ap-
proaches one (from the appropriate side), there will be a
horizon at some small rh which approaches the origin.
Now since F is a function of r +'=r ",f is an even
function. Combined with the fact that f (0) is finite, this
shows that df /"r}r vanishes at the origin. Therefore the
black-hole temperature given in Eq. (22) approaches zero
as rh~0. Unfortunately the final state is no longer a
black hole since the hypersurface r=0 is singular. One
might say that the horizon vanishes leaving a lightlike
singularity (i.e., the tangent vectors to the singularity are
spacelike except for one lightlike direction). We will
show in the next section though that the lifetimes of these
black holes are infinite.

The second case in which zero temperature can be pro-
duced is when two horizons coalesce to produce a degen-
erate horizon. This is an obvious possibility for the
theories where a number of horizons are possible. In this
case, the final state is a black hole with an actual (degen-
erate) horizon at a finite radius, and so may be regarded
as a zero-temperature soliton rather like an extremal
Reissner-Nordstrom or an extremal Kerr black hole.

IV. DISCUSSION

Our discussion of black-hole solutions for the general
Lovelock theory slightly expands that of Ref. 8 by includ-
ing curved backgrounds (i.e., Fo&0 which may even
occur when co =0). It was also pointed out that the state-
ment made there that solutions in a flat background can
have at most one horizon is incorrect. In principle it is

possible to construct theories in which the solutions have
any number of horizons by adding more higher-derivative
interactions and increasing the space-time dimension.
Hence much more complicated global topologies are pos-
sible for these theories than appear for solutions of
Einstein's equations.

In the four-derivative theory examined in Sec. II, there
is a class of solutions without naked singularities, which
were previously overlooked —the asymptotically
Schwarzschild —de Sitter solutions, where @=+1,A, &0,
and co, &co&0. This range of parameters was probably
not explored in the past because the solutions suffer from
two defects. First and most obvious is that there is a
large background cosmological constant, proportional to
—I/X. The second is that gravitons in this background
are ghosts (i.e., negative-energy particles}. This leads to
the unusual result that the black holes above have posi-
tive gravitational mass but negative inertial mass. If the
associated Hawking radiation consisted only of gravitons,
the radiation would carry away negative inertial mass
and co would evolve towards zero. (This assumes that the
temperature of the event horizon is higher than that of
the cosmological horizon. This is always true for the
solutions in the four-derivative theory, but it need not be
the case for de Sitter background solutions in some of the
higher-derivative theories. ) This makes a self-consistent
picture if gravity is the only field in the theory. If matter
fields satisfying a positive-energy condition' are includ-
ed, their contribution to the Hawking radiation would
tend to drive ~ down to co, . In this case, these solutions
and the de Sitter vacuum are unstable against the produc-
tion of gravitational radiation and hence are not suitable
backgrounds for reliable field-theory calculations. They
may still play a role as extrema in a quantum path in-
tegral over geometries.

With regard to black-hole thermodynamics, the most
interesting result was that in some cases the black-hole
temperature vanishes at a finite mass. This behavior al-
ways occurs for asymptotically flat solutions in
D =2k + 1 for the Lagrangians given in Eq. (2}, which in-
clude Xz and have coefficients c which allow the solu-
tions to be extended to the origin. In the four-derivative
theory discussed in Sec. II, this corresponds to the case of
D=5 and A, &0. Then from Eq. (10), one finds that
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T -(co —A/2)' and hence vanishes as co~coo ——A, /2.
Unfortunately it is in precisely this limit that the horizon
vanishes revealing the naked singularity which occurs for
co(A, /2. One may ask how much time is required to
reach cup by black-hole evaporation. The rate of mass de-
crease is given by the luminosity L -AT, where A is
the area of the horizon. [Note that A has dimensions
(length) . ] One then finds

dN 4
rq T———(co —coo)

dt

which may be integrated to yield

bt -(co—coo)
~

'~ao .

Therefore it requires an infinite amount of time for the
black hole to evaporate down to cop beginning at any mass
co, for which the temperature is finite. In this theory, the
black holes would always exist as potential reservoirs of
information for external observers, evading any violations
of unitary time evolution.

Similar results are found in the asymptotically flat
solutions of the higher-derivative theories with X& in
D =2k+1. The temperature vanishes for cop-cz, but
the horizon also vanishes in this limit leaving a naked
singularity. Further investigation reveals that if
cB/GI, &0,

(23)

with P=2k + 1 —1/(k n) wh—ere c„ is the next nonvan-
ishing coeflicient in P(F). Integrating Eq. (23), then
shows that the black holes have an infinite lifetime. Un-
fortunately we have no physical insight into the mecha-
nism by which the temperature of these black holes van-
ishes. It appears as simply an accident of numerology
that yields finite f at r=0 for D =2k+1, and the in-
teresting thermodynamics follows as a result of this fact.
In the theories with k& 2, the complete analysis is com-
plicated by the fact that more than one horizon may
occur for co=coo (as is the case for c„/c& &0). Therefore
one must determine whether the horizon with r&~0 is
relevant for external observers. Similar complications
arise for nonasymptotically flat solutions with Fo&0.

The second possibility for vanishing temperatures was
by the occurrence of a degenerate event horizon. In the
four-derivative theory discussed in Sec. II, this possibility
was only realized by a singular solution with a single
cosmological horizon in a de Sitter background. For
some of the more general theories though, it is possible to
find asymptotically flat solutions with more than one
nondegenerate horizon. An appropriate choice of the
mass parameter co will then yield a degenerate horizon,
and hence this solution will be a nonsingular zero-
temperature soliton. More general analysis of this case is
difficult because finding the solutions becomes increasing-
ly complicated. By Galois's famous result the roots of a
generic kth-order polynomial are soluble in terms of radi-
al expressions only for k &4. Therefore, analytic solu-
tions for the metric coming from Eq. (17) only occur for
generic cases of the four-, six-, and eight-derivative

theories. We have studied the six-derivative theory and
found examples of degenerates horizons.

It should be pointed out that these solutions with de-
generate horizons actually occur as the final states of the
black-hole evaporation process. One can argue this fact
by first noting from Eq. (21) that if (f ) „has a zero it is
determined entirely by the coefficients c appearing in
the Lagrangian. Equation (17) then shows that the mass
parameter co sets the scale for F, and hence, with an ap-
propriate choice co =no, the zeros off and (f ) „can be
made to coincide. Now in most cases the existence of
horizon requires F&0 which in turn requires P'(0)&0
and co & 0 or P'(0) & 0 and co & 0. In either case Hawking
radiation in the form of gravitons drives co —+0; recall that
in the latter case, both the black hole and the gravitons
possess negative inertial mass. So if one begins with a
solution with a large value of

~

co
~

&
~
~o ~, where large is

defined as yielding f & 0 where (f ) „=0. Then the
black-hole evaporation process will end with a degenerate
horizon at co=cop. For Fp )0 there also exists the possi-
bility that a number of horizons occur when F&0. This
case requires P'(0) &0 and co &0 or P'(0) &0 and co&0,
and so Hawking radiation due to gravitons drives

~

co
~

to
larger values and the evaporation process ends when the
cosmological and event horizons coalesce. For the previ-
ous case, as the black hole approaches the soliton solu-
tion, one may show that

T—(a) coo)—
where a) —,'. The time required to reach the final state is

then infinite.
These solutions with a zero-temperature limit also

display the interesting property that in the final stages of
the evaporation process the specific heat is positive. This
allows these black holes to come into stable equilibrium
with an external thermal bath. For black-hole solutions
of Einstein s equations, such stable equilibria have only
been found for black holes confined to systems of finite
size. ' In the four-derivative theory, the only case with
r)co/BT&0 was D=5 and A, &0, which had the zero-
temperature limit for co~k/2. For more general theories
there exist cases with Bco/8 T& 0 without a zero-
temperature limit. This would be sufficient to avoid corn-
plete black-hole evaporation as long as the external
universe ended in a thermal state with a sufficiently
higher temperature.

Although black holes for many of the Lovelock
theories have desirable thermodynamic properties, such
behavior is by no means universal. In fact often, the new
interactions accelerate the evaporation process. Consider
the early stages of the evaporation of an asymptotically
flat black hole for the four-derivative theory. Defining
co

—=co, one is considering co ))A, . One finds that

D —3 D —2 A,T= 1—
4~9 D —3 2co

and

dao 1 (D + 1)(D —2) A,

dt g& D —3 2g&
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In these formulas, the factor in parentheses gives the
leading correction to the usual Einstein result given by
the first factor. Therefore for A, ~ 0, the higher-derivative
corrections slow down the early stages of evaporation
while for k &0, they accelerate the process. The same re-
sults hold for the general theories since the four-
derivative interactions will produce the leading correc-
tions in the regime considered here. One need only sub-
stitute A, =2c2 to be consistent with the notation of Sec.
III.

Perhaps even more interesting is examining the final
stages of the black-hole evaporation when the black hole
or the horizon vanishes. Once again begin with asymp-
totically flat solutions in the four-derivative theory. For
X & 0 and D & 5, cp approaches zero in the final stages, and
dtpldt ——(toll, )

' which diverges faster than for
the usual Einstein rate, den/dt ——co ' '. For a
(2k)-derivative theory in D & 2k +1 in which the solu-
tions are extended to the origin with a single horizon,
dtpldt ——t0 ( ' "+"l as tp approaches zero in the
final stages of evaporation. Thus the evaporation process
is again accelerated by the higher-derivative interactions.
In the four-derivative theory with A, &0,
cp —+co, =

~

A,
~

'~ l2, and rh~
~

R
~

at which point
the horizon vanishes leaving a naked singularity. One
finds that dtpldt ——(c0—tp, ),and so the naked singu-
larity is produced in a finite amount of time. For the case
where a singularity at finite radius and a single horizon
occur in the general case, the evaporation process also
reaches a naked singularity in a finite amount of time.

Given a theory with a zero-temperature solution at
co =co0, one may wish to consider solutions with

~

co
~

&
~

Alp
~

. Typically such solutions will have a
nonzero temperature, and evaporate down to a singular
final state or flat space. These soultions will be small
Planck-size black holes which would not arise in a nor-
mal stellar collapse, but one might imagine that they
could arise in some quantum gravity process. In such a
case, it appears that there would still be some quantum
incoherence due to the evaporation of these Planckian
black holes.

Our definition of the black-hole entropy (11), which
may be applied equally well in any of the higher-
derivative theories, arises from a thermodynamic
definition having identified the Euclidean action with the
free energy. Therefore after requiring thermodynamic
equilibrium, the first law of black-hole mechanics follows:

5S =P5M .

This result makes our choice for the entropy credible. At
this point though, we must stress again that the definition
(11) is only tentative. We have not proven the second law
of black-hale mechanics in the context of these new
theories (i.e., 5S &0). One of the basic assumptions used
to prove this relation in Einstein gravity, the weak-
energy condition, ' is violated by the effective stress-
energy tensor in Lovelock gravity. Unfortunately prov-
ing the zeroth law, which states that the surface gravity is
constant over the horizon, relies on an even stronger con-
dition, the dominant energy condition. ' In the solutions

P(F)=
r

q

r 2D —4 7

where the charge is proportional to q and F,„-qlrD
For q&0 and the special case of theories in D =2k+1
including interactions up to Lk, one easily sees that the
temperature no longer vanishes as described above. One
still expects that zero-temperature degenerate horizons
will occur for q =co as in an extreme Reissner-Nordstrom
black hole at least for large mass. Also one may con-
struct zero-temperature black holes similar to the cases
with degenerate horizons at finite radius described above
by choosing q sufficiently small. It would be useful to ex-
plore black-hole thermodynamics in these regimes in
more detail as well as for q ~ co.

Many of the theories studied here lead to desirable
black-hole thermodynamics and may evade any violations
of unitarity time evolution. [One should note that the
simple considerations presented in the Introduction seem
to be in contradiction with the idea that the remnant
black holes have little internal structure as implied by

considered here, this constancy is enforced by spherical
symmetry. A priori though, there is no apparent reason
that it should be true for a spinning black hole in these
theories, in which case one could not interpret the black
hole as a thermal bath.

In the four-derivative theory, one finds that the entro-
py (13) always increases with tp or the mass, just as for a
black hole in Einstein gravity. Unlike Einstein's theory
though, the entropy in Eq. (13) or for any of the higher-
derivative theories is not one-quarter of the horizon area
except approximately for ri, »

~

2
~

or equivalently for
large mass. Therefore the usual intuitive notion that the
entropy is a property of the horizon of the black hole fails
for these theories. The large deviation of the entropy
from the usual Einstein result for rt, &

~

X
~

will be impor-
tant in examining the final stages of black-hole evapora-
tion.

For A, &0, the result in Eq. (13) has the problem that it
becomes negative for small co. This is undesirable from
the point of view of statistical mechanics, where
S=—g, P;lnP; is a positive-definite quantity. More
generally though, one should regard entropy as a relative
quantity. When a black hole in Einstein s theory is as-
signed S =A/4G, implicitly this is relative to S=O for
flat empty space. The source of the problem for the
four-derivative theory with A, &0 may be that there is not
a continuous family of nonsingular solutions which con-
nect a black hole of mass co to flat space. The solutions
considered here become singular when r„~

~

A,
~

. Hence
one should only apply Eq. (13) to determine the entropy
of one black hole relative to another. Perhaps by a care-
ful examination of a series of systems containing a gas of
gravitons in flat and black-hole backgrounds, one may be
able to deduce the entropy of the black holes relative to
flat space.

It would be of interest to consider modifications of our
results by the addition of matter fields to Lovelock gravi-
ty. Including an electromagnetic field, one may find
charged black-hole solutions by simply replacing Eq. (18)
by9
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their small entropy (which remains true in the four-
derivative theory at least). It seems implausible then that
there could be a sufficient number of internal states to to-
tally correlate the emitted radiation. ] At the very least
then, this demonstrates concretely how black-hole eva-
poration might qualitatively differ from the naive predic-
tions derived from Einstein's theory. Might we infer any
further lessons from the present studies for more serious
candidates for the theory of quantum gravity? We expect
the theory to have two particular properties of relevance.
First no new scales are envisaged to appear, and so any
higher-derivative interactions will appear with
coefficients on the order of the Planck scale. We should
then consider any nonvanishing c in Eq. (2) to be of the
order (Planck length) . It is encouraging that the
zero-temperature solutions of the six-derivative theory in
eight dimensions occur precisely in this regime. The
second expected property is that the theory will include
an infinite number of higher-derivative interactions, as
appear in a perturbative-field-theory approach or an
effective low-energy string action. This would suggest
that black-hole solutions would have a large number of
horizons, and yield a degenerate event horizon for the ap-
propriate mass, as we saw occurred for the Lovelock
theories with large numbers of higher-derivative interac-
tions. For a practical calculation, one would attempt to
solve including only a finite number of these interactions.
If the temperature is found to vanish for some solution,

the contributions of the higher-derivative terms must
equal that of the Einstein tensor at the horizon. Despite
the fact that the relevant physics may only involve finite
curvature, one should expect that the neglected higher-
derivative interactions will make equally important
corrections, rendering the calculation invalid. It would
require a new insight into the theory to determine a
cutoff in the number of interactions beyond which the
higher-order terms would add only small corrections.
Therefore it will be difficult to produce reliable results for
a reasonable candidate theory, but it may still be possible
that the problems quantum gravity faces due to the
black-hole evaporation are solved by the higher-
derivative interactions appearing in the full effective ac-
tion.
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