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This supplementary document contains the derivations of our proposed estimation framework as well as
additional simulation studies. In Section 1, we present the parameter estimation procedures used for the
encoding and decoding models. Section 2 includes the inference algorithms for state estimation using
fixed-lag smoothing, and Section 3 discusses the smoothing effect of the proposed state-space model.
Finally, we apply our proposed techniques to simulated MEG data in Section 4.

1 DYNAMIC ENCODING AND DECODING MODELS: PARAMETER ESTIMATION

Recall that the encoder/decoder estimation problems can be posed as the following optimization problem:

ˆ✓k = arg min

✓

k
X

j=1

�k�j kyj �Xj✓ k2
2

+ � k✓ k
1

, k = 1, 2, . . . , K. (S1)

At each window k, for k = 1, . . . , K, the encoding/decoding coefficients ˆ✓k are updated based on the new
measurements, i.e., yk and Xk, and previous measurements through the forgetting factor mechanism while
applying sparsity-promoting priors on the coefficients.

There are several standard optimization techniques that can be used to find the minimizer in (S1). Off-line
algorithms such as interior point methods do not meet the real-time requirements of our dynamic estimation.
The SPARLS algorithm has been introduced in (Babadi et al., 2010) to solve the problem in (S1) through
EM iterations, and it has been successfully adopted in (Akram et al., 2017) to estimate encoding coefficients
in a dynamic fashion. However, the EM algorithm and the constant step-size in SPARLS may result in
low convergence rates. Hence, to adapt our estimation procedure for real-time applications, we use the
Forward-Backward Splitting (FBS) method (Combettes and Pesquet, 2011), also known as the proximal
gradient method, to solve for ˆ✓k in (S1). FBS is suited for optimization problems where the objective
function can be expressed as the sum of a differentiable term, e.g., the log-likelihood term in (S1), and a
simple non-differentiable term, e.g., the `

1

-norm in (S1). This type of problems frequently arise in signal
processing and machine learning (Jenatton et al., 2010; Duchi and Singer, 2009; Figueiredo et al., 2007).
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In summary, each FBS iteration for the optimization problem in (S1) includes two steps: 1) taking a
descent step along the gradient of the log-likelihood term, and 2) applying a soft-thresholding shrinkage
operator (Goldstein et al., 2014; Sheikhattar et al., 2015). This procedure provides an algorithm that uses
recursive and low-complexity updates in an online fashion to solve Eq. (S1) upon the arrival of a new data
window. The optimization problem in (S1) can be rewritten as:

ˆ✓k = arg min

✓
✓TAk✓ + bT

k ✓ + � k✓ k
1

, k = 1, 2, . . . , K, (S2)

where Ak and bk can be updated recursively. Algorithm 1 summarizes the steps of the FBS algorithm
to solve for ✓k in (S1), when moving from window k � 1 to window k, as well as the required recursive
update rules for Ak and bk. The parameter SFBS in Algorithm 1 denotes the stopping condition for the
FBS algorithm, which can be a maximum iteration number or a convergence criterion on the objective
function.

Algorithm 1 Parameter Estimation in Dynamic Encoding and Decoding Models by Forward-Backward
Splitting

Input: yk, Xk, ˆ✓k�1

, Ak�1

, bk�1

, �, �, SFBS

Output: ˆ✓k, Ak, bk

1: Ak = �Ak�1

+ XT
kXk

2: bk = �bk�1

� 2XT
k yk

3: initialize ✓ with ˆ✓k�1

4: while ¬SFBS do
5: choose stepsize ⌧
6: u = ✓ � ⌧ (2Ak✓ + bk)

7: ✓i = sign(ui)⇥max

�

|ui|� �⌧, 0
 

, for each element of ✓
8: end while
9: ˆ✓k = ✓.

Remark 1. A proper step-size choice in Alg. 1 at each FBS iteration is crucial to the convergence of the
algorithm. For a fixed step-size, it has been shown that ⌧ < 2

L(rfk)
ensures the stability and convergence

of the algorithm (Combettes and Pesquet, 2011), where L(.) represents the Lipschitz constant, and fk
represents the log-likelihood term in (S1). Through standard Cauchy-Schwarz and triangle inequality
manipulations, we can calculate the simple upper bound L(rfk)  Lub = 2

Pk
j=1

�k�j
trace

�

XT
kXk

 

,
implying that ⌧ < 2

Lub
ensures stability; however, this loose upper bound may decrease the convergence

rate of the algorithm. Thus, it is more beneficial to ensure stability through backtracking and employing
acceleration schemes such as adaptive step-size selection or the Nesterov’s method (Goldstein et al., 2014).
We have used the FASTA software package (Goldstein et al., 2014) available online at (Goldstein et al.,
2015) in this work, which has built-in features for all the foregoing FBS step-size adjustment methods.

2 DYNAMIC STATE-SPACE MODEL: PARAMETER ESTIMATION

Recall that pk denotes the probability of attending to speaker 1 at instance k for k = 1, . . . , KA. Although
each k corresponds to a data window in time, we refer to it as an instance not to conflate it with the fixed-lag
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fixed

Figure S1. The parameters involved in state-space fixed-lag smoothing.

sliding window used for state estimation. The parameter KA denotes the number of instances in fixed-lag
smoothing as shown in Figure S1 (replaced from Figure 2 for completeness).

The linear state-space model which we apply on logit(pk) = ln

⇣

pk
1�pk

⌘

, can be summarized as:

8
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:

pk = P (nk=1) = 1� P (nk=2) =

1

1+exp(�zk)

zk = c
0

zk�1

+ wk

wk ⇠ N (0, ⌘k)

⌘k ⇠ Inverse-Gamma (a
0

, b
0

)

(S3)

Let m(1)

k and m
(2)

k represent the attention markers and nk represent a binary random variable taking values
1 or 2 depending on the attended speaker at instance k for k = 1, . . . , KA. The observation equations of the
state-space model, which relate the observed m

(1)

1:KA
and m

(2)

1:KA
to the hidden variables of the state-space

model in Eq. (S3), can be summarized as:
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nk= i ⇠ Log-Normal
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⇢(a), µ(a)
⌘

, i = 1, 2

m
(i)
k

�

�

�

nk 6= i ⇠ Log-Normal

⇣

⇢(u), µ(u)
⌘

, i = 1, 2

⇢(a) ⇠ Gamma

⇣

↵
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, �
(a)
0

⌘

, µ(a)
�

�

�

⇢(a) ⇠ N
⇣
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(a)
0

, ⇢(a)
⌘

⇢(u) ⇠ Gamma

⇣

↵
(u)
0

, �
(u)
0

⌘

, µ(u)
�

�

�

⇢(u) ⇠ N
⇣

µ
(u)
0

, ⇢(u)
⌘

(S4)

The parameters of the state-space model are, therefore, ⌦ =

n

z
1:KA

, ⌘
1:KA

, ⇢(a), µ(a), ⇢(u), µ(u)
o

, which

have to be inferred from m
(1)

1:KA
and m

(2)

1:KA
. For notational simplicity, hereafter we use the boldface version

of a variable to denote a vector containing all its instances, e.g., z :

= z
1:KA and m(i)

:

= m
(i)
1:KA

for
i = 1, 2.

The inference problem for ⌦ can be expressed as:

b⌦ = arg max

⌦
ln P

⇣

⌦
�

�m(1),m(2)

⌘

= arg max

⌦
ln P

⇣

m(1),m(2)

�

�⌦
⌘

+ ln P (⌦) , (S5)

where the log-likelihood and the log-prior are respectively expanded as:
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ln P

⇣

m(1),m(2)

�

�⌦
⌘

= ln

0

@

X

n1:KA

KA
X

k=1

pk P

⇣

m
(1)

k

�

� nk,⌦
⌘

P

⇣

m
(2)

k

�

� nk,⌦
⌘

1

A , (S6)

ln P(⌦) = ln P

⇣

⇢(a), µ(a)
⌘

+ ln P

⇣

⇢(u), µ(u)
⌘

+

KA
X

k=1



�1

2

ln ⌘k �
(zk � c

0

zk�1

)

2

2⌘k
+ ln P(⌘k)

�

| {z }

ln P(z,⌘)

+cnst.

(S7)

Similar to the treatment in (Akram et al., 2016), we use an Expectation Maximization (EM) algorithm with
n as the latent variables to infer ⌦. Note that the optimization problem in (S5) is non-convex in general;
thus, the choice of initial conditions and hyperparameters for priors are important for reaching a desirable
local maximum. Having the estimate b⌦(`) for ⌦ at the `th EM iteration, we will next derive the E-step and
M-step of the (`+1)

th EM iteration.

2.1 The E-step

In the E-step, the surrogate function Q
⇣

⌦
�

� b⌦(`)
⌘

is calculated as:

Q
⇣

⌦
�

� b⌦(`)
⌘

=

1

KA
E
n

ln P

⇣

m(1),m(2),n
�

�⌦
⌘o

| {z }

A

+ ln P(⌦), (S8)

where the expectation of the complete log-likelihood ln P

⇣

m(1),m(2),n
�

�⌦
⌘

needs to be calculated with

respect to n given m(1),m(2), b⌦(`). For notational simplicity, hereafter we drop the n
�

�m(1),m(2), b⌦(`)

subscript of the conditional expectations.

We have used a normalized version of the log-likelihood in Eq. (S8) for two reasons. First, the window
length KA is a hyperparameter in our framework, which we can modify to find the optimal trade-off
between the dimensionality of the state-space and history-dependence of the model. Thus, to change
the window length for fixed priors, it is important to normalize the contribution of the log-likelihood in
(S8). Second, as noted before, we have a non-convex inference problem, which makes the resulting local
maximum dependent on the conjugate priors used. We can use samples of m(i)

k ’s to estimate the attended
and the unattended Log-Normal distributions and tune the hyperparameters to these distributions. By
normalizing the log-likelihood term, we are enforcing informative and empirical prior distributions which
would guide the inference procedure towards a plausible local maximum. For instance, for the correlation-
based attention marker, we expect that a plausible solution would result in the attended Log-Normal
distribution being concentrated around larger correlation values compared to the unattended distribution.
Nevertheless, the forthcoming derivations can be carried out without the normalization factor 1/KA in a
similar fashion.

Let Iu(v) represent the indicator function, i.e., it is equal to one if v=u and zero otherwise. Conditioning
on n and using the conditional independence of m(1) and m(2) given n and ⌦, the expected log-likelihood
A in (S8) can be simplified as:
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(S9)

=

KA
X

k=1

"

2

X

i=1

2

X

j=1

E {Ij(nk)} ln P

⇣

m
(i)
k

�

� nk=j,⌦
⌘

+ E {I
1

(nk)} pk + E {I
2

(nk)} (1�pk)
| {z }

E
n

ln P

⇣
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�

�⌦
⌘o

#

.

Note that m(i)
k

�

� nk,⌦ pertains to either the attended or unattended Log-Normal distributions in Eq. (S4)
depending on the values of i and nk. Considering that the nk’s are binary random variables and the
expectations are with respect to n

�

�m(1),m(2), b⌦(`), the term E
�

Ij(nk)
 

can be computed for j = 1, 2
using Bayes’ rule and conditional independence as:

E {Ij(nk)} = P

⇣

nk=j
�

�m(1),m(2), b⌦(`)
⌘

(S10)

= P

⇣
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�m
(1)

k ,m
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k , b⌦(`)
⌘

=
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⇣
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�
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⇣
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�
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⇣

m
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k ,m
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�
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⌘
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⇣
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k

�
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⇣

m
(2)

k

�
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⌘
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⇣

nk=j
�
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⌘

P
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P

⇣

m
(1)

k

�

� nk,
b⌦(`)

⌘

P

⇣

m
(2)

k

�
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P

⇣
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�

� b⌦(`)
⌘ .

The parameters of the Log-Normal distributions for m(i)
k

�

� nk,
b⌦(`) are determined from the estimated

⇣

⇢(a), µ(a), ⇢(u), µ(u)
⌘

in the previous EM iteration, i.e., b⌦(`). Also, P

⇣

nk
�

� b⌦(`)
⌘

=

1

1+exp

⇣

�ẑ
(`)
k

⌘ in

(S10), where ẑ
(`)
k is the estimate of zk from the previous EM iteration. Note that E

�

I
1

(nk)
 

= 1 �
E
�

I
2

(nk)
 

as nk is a binary random variable. Defining ✏
(`)
k :

= E
�

I
1

(nk)
 

with the expectation over
nk

�

�m
(1)

k ,m
(2)

k , b⌦(`), we can conclude the E-step by simplifying Q
⇣

⌦
�

� b⌦(`)
⌘

in Eq. (S8) as:
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Q
⇣

⌦
�

� b⌦(`)
⌘

=

KA
X

k=1

1

2KA

(

� ⇢(a)


✏
(`)
k

⇣
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(1)

k �µ
(a)
⌘

2

+

⇣

1�✏(`)k

⌘⇣
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(2)
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(a)
⌘

2

�

(S11)

� ⇢(u)


⇣

1�✏(`)k

⌘⇣

lnm
(1)

k �µ
(u)
⌘

2

+ ✏
(`)
k

⇣
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(2)

k �µ
(u)
⌘

2
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+ ln ⇢(a) + ln ⇢(u)
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(a)
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+ 0.5
⇣

µ(a)�µ(a)
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⌘

2

�
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⇣

↵
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�
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+ 0.5
⇣

µ(u)�µ(u)
0

⌘

2

�
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⇣

↵
(u)
0

�0.5
⌘

ln ⇢(u)

+

KA
X

k=1

(

✏
(`)
k pk +

⇣

1�✏(`)k

⌘

(1�pk)� (a
0

+ 1.5) ln ⌘k �
1

⌘k

⇥

b
0

+ 0.5(zk � c
0

zk�1

)

2

⇤

)

+ cnst.

where the cnst. term includes all the terms that are independent of ⌦.

2.2 The M Step

In the M step, we maximize Q
⇣

⌦
�

� b⌦(`)
⌘

in Eq. (S11) with respect to ⌦. The maximizers form the

parameter updates for the (`+1)

th EM iteration. As we observe in Eq. (S11), having n as the latent variables
separates the terms in Q

⇣

⌦
�

� b⌦(`)
⌘

depending on the distribution parameters, i.e.,
⇣

⇢(a), µ(a), ⇢(u), µ(u)
⌘

,
and the terms depending on the state-space parameters, i.e., z and ⌘. The derivation of the update rules for
the distribution parameters is straightforward through taking the derivatives of Q

⇣

⌦
�

� b⌦(`)
⌘

and solving
for their joint zero-crossings. Consequently, the closed-form formulas for the distribution parameters
maximizing Q

⇣

⌦
�

� b⌦(`)
⌘

can be expressed as:
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⇤

=

1

2

(

µ
(a)
0

+

1
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X

k=1

h

✏
(`)
k lnm
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k +

⇣

1�✏(`)k

⌘
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(2)

k

i

)

, (S12)

µ(u)
⇤

=

1

2

(

µ
(u)
0

+

1

KA

KA
X

k=1

h⇣

1�✏(`)k

⌘

lnm
(1)

k + ✏
(`)
k lnm

(2)

k

i

)

, (S13)
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⇢(a)
⇤

=

2KA↵
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lnm
(1)

k �µ(a)
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⇤⌘2

�

+ KA



2�
(a)
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(S14)
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⌘
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�
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(S15)

where
⇣

⇢(a)
⇤
, µ(a)

⇤
, ⇢(u)

⇤
, µ(u)

⇤⌘
will be the updated distribution parameters in b⌦(`+1).

The next step is to maximize Q
⇣

⌦
�

� b⌦(`)
⌘

with respect to z and ⌘. Note that this joint maximization
is non-convex in general. Consider the following state-space model with parameters (z0,⌘0

) and binary
observations n0.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

n0k ⇠ Bernoulli

⇣

1

1+exp(�z0k)

⌘

z0k = c
0

z0k�1

+ w0
k

w0
k ⇠ N (0, ⌘0k)

⌘0k ⇠ Inverse-Gamma (a
0

, b
0

)

(S16)

For the inference problem in (S16), the log-posterior can be expressed as:

arg max

z0,⌘0
ln P

�

z0,⌘0 �
� n0�

= arg max

z0,⌘0



ln P

�

⌘0 �
� n0�

+ P

�

z0 �
� ⌘0,n0�

�

. (S17)

If we replace the observations n0k in (S17) with ✏
(`)
k , for k = 1, 2, . . . , KA, the inference problem becomes

equivalent to maximizing Q
⇣

⌦
�

� b⌦(`)
⌘

in (S11) with respect to z and ⌘.

In (Smith and Brown, 2003; Smith et al., 2004), the inference of the parameters in (S16) has been carried
out through the EM algorithm, where in each iteration, a Kalman filtering and smoothing algorithm has
been employed together with Gaussian approximations. Similar to (Akram et al., 2016), we refer to this
EM algorithm as the inner EM not to confuse it with the EM algorithm we have already adopted, which we
call the outer EM hereafter. The basic idea behind the inner EM is to approximate the solutions to (S17) as:

8

<

:

⌘0⇤
= arg max⌘0 P

�

⌘0 �
� n0�

z0⇤
= arg maxz0 P

�

z0 �
� ⌘0⇤,n0�

, (S18)
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where ⌘0⇤ are estimated through the inner EM with z0 as the latent variables, and z0⇤ are just the result of
a Kalman filtering and smoothing algorithm in (S16) for ⌘0

= ⌘0⇤.

In order to make the inference procedure suitable for real-time implementation, we can avoid the inner
EM and instead use crude estimates of ⌘0⇤ in (S18). Note that ✏(`)k , which acts as the observation n0k in (S16)
for k = 1, 2, . . . , KA, is equal to P

⇣

nk=1

�

�m
(1)

k ,m
(2)

k , b⌦(`)
⌘

calculated as in (S10). Assuming that ✏(`)k ⇡

P

�

n0k=1

�

=

1

1+exp(�z0k)
, in the `th outer EM iteration, we can consider

h

logit

⇣

✏
(`)
k

⌘

� c
0

logit

⇣

✏
(`)
k�1

⌘i

as a sample of N (0, ⌘0k). Therefore, considering the Inverse-Gamma prior, a crude estimate for ⌘0⇤k can be
calculated for k=1, 2, . . . , KA as:

⌘0
⇤
k =

2b
0

+

h

logit

⇣

✏
(`)
k

⌘

� c
0

logit

⇣

✏
(`)
k�1

⌘i

2

2a
0

� 1

. (S19)

If KA is small enough, we can simplify the state-space model of (S16) by assuming a single variance, i.e.,
⌘0 = ⌘0k for k=1, 2, . . . , KA, and using an estimate similar to (S19) for ⌘0⇤. However, in this model, the
crude estimate would be more reliable as it is based on KA samples rather than a single sample. Considering
a normalized log-likelihood and the same Inverse-Gamma prior on ⌘0, the estimate for ⌘0⇤ can be computed
as:

⌘0
⇤

=

2b
0

+

1

KA

PKA
k=1

h

logit

⇣

✏
(`)
k

⌘

� c
0

logit

⇣

✏
(`)
k�1

⌘i

2

2a
0

� 1

. (S20)

After estimating ⌘0⇤k in (S19) for k=1, 2, . . . , KA, or ⌘0⇤ in (S20), we can proceed as before to estimate
z0⇤, i.e., using a Kalman filtering and smoothing algorithm with Gaussian approximations to estimate
z0⇤ in (S18). These estimates, namely z⇤ and ⌘⇤, form approximate solutions for z and ⌘ in the original
problem of maximizing Q(⌦

�

� b⌦(`)
) in (S11) with respect to the state-space parameters.

Next, we discuss the details of the inner EM algorithm, as in (Akram et al., 2016), used to solve for z0 and
⌘0 in (S16). As mentioned before, the idea is to use an EM algorithm together with Gaussian approximations
to maximize P

�

⌘0 �
� n0�, and then maximize the likelihood of z0 with respect to the observations and

estimated variances. Considering z0 as the latent variables, the surrogate function Q(⌘0�
�

b⌘0(`)
) at `th EM

iteration is calculated as:

Q

✓

⌘0�
�

b⌘0(`)
◆

= E
�

ln P

�

n0, z0 �
� ⌘0� 

+ ln P(⌘0
) (S21)

=

KA
X

k=1

"

E
�

(z0k�c0z0k�1

)

2

 

+ 2b
0

2⌘0k
+ (a

0

+1.5) ln ⌘0k

#

+ cnst.,

where the expectations are with respect to z0 �
� n0, b⌘0(`), and the cnst. term contains all the terms that are

independent of ⌘0.
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In the M-step of the inner EM algorithm, Q
✓

⌘0�
�

b⌘0(`)
◆

is maximized with respect to ⌘0 to calculate the

updated variances for the next EM iteration. Taking the derivative of (S21) with respect to ⌘0 and equating

it to zero results in the following update rule for b⌘0(`+1)

:

b⌘0
(`+1)

k =

1

2a
0

+ 3

⇥

E
�

(z0k�c0z0k�1

)

2

 

+ 2b
0

⇤

(S22)

=

1

2a
0

+ 3

h

E
n

z0k
2

o

+ c2
0

E
n

z0k�1

2

o

� 2c
0

E
�

z0kz
0
k�1

 

+ 2b
0

i

=

1

2a
0

+ 3

h

�2k|KA
+z̄2k|KA

+c2
0

�2k�1|KA
+c2

0

z̄2k�1|KA
�2c

0

�2k,k�1|KA

�2c
0

z̄k|KA
z̄k�1|KA

+2b
0

i

,

where the parameters z̄k|KA
and �2k|KA

in Eq. (S22) are respectively the mean and the variance of

z0k | n0, b⌘0(`).

If we consider the Gaussian approximation N
⇣

z̄k1|k2 , �
2

k1|k2

⌘

to the density z0k1 |n
0
1:k2

, b⌘0(`) for 1  k
1


k
2

 KA, these parameters can be computed in a forward and backward pass similar to the conventional
Kalman filtering and smoothing algorithms. The corresponding filtering equations for 1  k  KA are
summarized as:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

z̄k|k�1

= c
0

z̄k�1|k�1

�2k|k�1

= c2
0

�2k�1|k�1

+ ⌘0k
(l)

z̄k|k = z̄k|k�1

+ �2k|k�1

h

n0k �
exp(z̄k|k)

1+exp(z̄k|k)

i

�2k|k =



1

�2
k|k�1

+

exp(z̄k|k)

(

1+exp(z̄k|k))
2

��1

(S23)

Note that the third equation in (S23) is a non-linear equation whose solution can be approximated through
standard approaches such as the Newton’s method. The last two equations in (S23) come from the Gaussian

approximation: assuming that z0k�1

| n0
1:k�1

, b⌘0(`) v N
⇣

z̄k�1|k�1

, �2k�1|k�1

⌘

we calculate the Gaussian

approximation for z0k | n0
1:k,

b⌘0(`). The mean of the Gaussian approximation z̄k|k is calculated as the

mode of ln P

✓

z0k | n01:k, b⌘0(`)
◆

, and its variance �2k|k is computed as the negative inverse Hessian of

ln P

✓

z0k | n01:k, b⌘0(`)
◆

evaluated at the estimated mean z̄k|k (Tanner, 1991). The smoothing equations are

the same as those used for fixed interval smoothing. Therefore, for 1  k  KA � 1, we have:
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8

>

>

>

>

<

>

>

>

>

:

sk = �2k|k

.

�2k+1|k

z̄k|KA
= z̄k|k + sk

�

z̄k+1|KA
� z̄k+1|k

�

�2k|KA
= �2k|k + s2k

⇣

�2k+1|KA
� �2k+1|k

⌘

(S24)

The �2k,k�1|KA
term in (S22) is a lagged covariance term that can be computed using the covariance

smoothing algorithm (De Jong and Mackinnon, 1988):

�2k,k�1|KA
= Cov

⇢

z0k, z
0
k�1

�

� n0, b⌘0(`)
�

=

�2k�1|k�1

�2k|KA

�2k|k�1

. (S25)

Having calculated the variances ⌘0⇤ from the inner EM algorithm, z0⇤ can be estimated using a single
forward and backward pass for ⌘0

= ⌘0⇤, similar to that used in the inner EM algorithm. In summary, we
have transformed the problem of maximizing (S11) with respect to z and ⌘ into inferring z0 and ⌘0 in
(S16) by identifying n0k with ✏

(l)
k for k = 1, . . . , KA. We have then solved the latter problem through an

EM algorithm combined with Gaussian approximations and Kalman filtering and smoothing. Therefore,
we have z⇤

= z0⇤ and ⌘⇤
= ⌘0⇤ in the original problem.

Algorithm 2 Parameter Estimation in Dynamic State-Space Model

Input: m
(1)

1:KA
, m(2)

1:KA
, ↵(a)

0

, ↵(u)
0

, �(a)
0

, �(u)
0

, µ(a)
0

, µ(u)
0

, a
0

, b
0

, SEM

Output: b⌦ =

n

ẑ
1:KA

, ⌘̂
1:KA

, ⇢̂(a), µ̂(a), ⇢̂(u), µ̂(u)
o

1: Set b⌦(0) as the initialization for state-space model parameter set based on estimates in the previous
instance

2: ` = 0

3: while ¬SEM do
4: calculate ✏

(`)
1:KA

using (S10)
5: update the parameters of the Log-Normal distributions, i.e., µ(a), µ(u), ⇢(a), ⇢(u), based on

equations (S12), (S13), (S14), and (S15) respectively
6: update the state-space variances, i.e., ⌘

1:KA
, using the inner-EM algorithm or the crude estimates

in equations (S19) and (S20)
7: update the hidden states in the state-space model, i.e., z

1:KA
, using a Kalman filtering and

smoothing algorithm with Gaussian approximations
8: set b⌦(`+1) as the updated parameter set including the updated distribution parameters, variances,

and hidden states in the state-space model
9: ` ` + 1

10: end while
11: b⌦ =

b⌦(`).

Algorithm 2 summarizes the overall inference procedure within a fixed-lag window of length KA.
Going back to Fig. S1, copied from the paper, we assume k = k

0

is the current instance and the

10
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goal is to infer the attentional state at instance k = k
0

� KF based on the attention markers within
the window indexed from 1 to KA, given by m

(i)
k for i = 1, 2 and k = 1, . . . , KA. We initialize

the state-space model parameter set ⌦ using the estimates at the previous instance, and the output
of Algorithm 2, i.e., b⌦, is used for initialization in the next instance. Defining f(.) as the sigmoid
function, f

⇣

ẑKA�KF

⌘

determines the estimated probability of attending to speaker 1 at k = k
0

�KF ,

and
h

f
⇣

ẑKA�KF
�1.65�̂2KA�KF |KA

⌘

, f
⇣

ẑKA�KF
+1.65�̂2KA�KF |KA

⌘i

represents the 90% confidence
intervals of this estimate, where �̂2KA�KF |KA

represents the inferred variance of ẑKA�KF calculated through
the discussed Gaussian approximations. The parameter SEM in Algorithm 2 is a stopping condition for the
outer EM, which can be a limit on the number of iterations.

3 SMOOTHING EFFECT OF STATE-SPACE MODELING

In this section, we discuss the smoothing effect of the proposed state-space estimation and compare it
with that of sliding Gaussian kernel smoothers. Recall that the Inverse-Gamma conjugate prior on ⌘k’s in
Eq. (S3) controls the degree of smoothing in the state-space model. If this prior favors smaller values of
⌘k’s, the consecutive changes in zk’s and thereby pk’s will be smaller, which results in a larger smoothing
effect. We tune the Inverse-Gamma prior through the hyperparameters a

0

and b
0

as in Eq. (S3) to match
the auditory attention dynamics. Therefore, we expect that the corresponding smoothing effect will make
the state-space estimates robust to the stochastic fluctuations in the attention markers, while capturing the
attention switching instances with a small transition delay.

Fig. S2-A shows the output of the correlation-based attention marker in Case 2 of the simulation study in
the main manuscript (row D of Fig. 4). The output of the real-time estimator with 1.5 s forward-lag (as
in row F of Fig. 4) is shown in Fig. S2-B. We also consider two non-causal Gaussian kernel smoothers
with the same delay of 1.5 s for fairness of comparison. Fig. S2-C and S2-E show the attention markers of
Fig. S2-A convolved with the two Gaussian kernels, respectively. The two kernels are shown as insets in
Fig. S2-C and S2-D. Gaussian kernel 1 in Fig. S2-C favors the current values of the attention marker while
Gaussian kernel 2 in Fig. S2-D gives more weight to its future values.

Both kernels provide a clearer picture of the attentional state by smoothing out the stochastic fluctuations
of Fig. S2-A. However, unlike the output of the state-space estimator, they do not provide statistically
interpretable results. First, based on Figs. S2-C and -D, we can only obtain a binary decision on the
attended speaker at each instance. The state-space estimates, however, provide a probabilistic measure
of the attentional state as shown in Fig. S2-B, together with statistical confidence intervals. The red
arrows in Fig. S2-C and -D mark instances where strong fluctuations in the attention markers result in
misclassification. For instance, the smoothed markers with kernel 2 imply an attention switch earlier
than the 30 s mark (upward arrow, Fig. S2-D). Such abrupt classification errors could be undesirable for
applications such as BCI systems or smart hearing aids, as the devices need to modify their settings back
and forth in a small time period. The state-space model prevents these instances of misclassification, thanks
to the confidence intervals of the estimated pk’s (the middle arrows) which help rule out such false alarm
events.

4 ENCODING MODEL SIMULATION

This section provides a simulated example to motivate our MEG analysis, in which we use an encoding
model and take the M100 component of the Temporal Response Function (TRF) as the attention marker.

Frontiers 11



Frontiers Supplementary Material

Case 2

speaker 1 attended speaker 2 attended

0.8

0.6

0

0.2

0.4

1

0.8

0.6

0

0.2

0.4

1

S
m

o
o
th

ed
w

it
h
 K

er
n
el

 1

C)

D)

speaker 1 speaker 2

time (s)
0 10 20 30 40 50 60

0.8

0.6

0

0.2

0.4

1

R
ea

l-
T

im
e

A
tt

. 
E

st
im

at
o

r

B)

0.8

0.6

0

0.2

0.4

1

C
o

rr
.-

b
as

ed
A

tt
. 

M
ar

k
e r

A)

speaker 1 speaker 2

speaker 1 speaker 2

S
m

o
o
th

ed
w

it
h
 K

er
n
el

 2

-1 8
0

0.08

-1 8
0

0.08

Figure S2. Smoothing effect of the state-space model in comparison to simple kernel smoothers: A)
Output of the correlation-base attention marker corresponding to Case 2 of the simulation study in the
main manuscript. B) Real-time estimator with 1.5 s forward-lag. C) Convolution of the correlation-based
attention marker with Gaussian kernel 1 (shown as inset). D) Convolution of the correlation-based attention
marker with Gaussian kernel 2 (shown as inset).

4.1 Simulation Settings

Consider the following generative model:

et = s
(1)

t ⇤ ⌧
(1)

t + s
(2)

t ⇤ ⌧
(2)

t + µ + nt, (S26)

where et, s
(1)

t , and s
(2)

t respectively denote the auditory component of the neural response, speech envelope
for speaker 1, and speech envelope for speaker 2. We have used the same speech signals for s(1)t and s

(2)

t as
in the EEG simulation, with the same sampling rate of fs=200 Hz. In the context of MEG processing, ⌧ (1)t

and ⌧
(2)

t are referred to as the TRF for speakers 1 and 2. We have set µ = 0.001 as the unknown constant
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mean and nt
iid⇠N (0, 2.5⇥10

�7

) as the observation noise. We assume an attention modulation effect on the
M100 component of the TRFs.

Figure S3 shows two cases for the TRFs ⌧
(1)

t and ⌧
(2)

t : In the left panels (case 1), there is a strong
attention modulation effect on the M100 components, and in the right panels (case 2), this effect is
weakened. In both cases, the attention is on speaker 1 during the [0, 30) s interval and on speaker 2 during
the (30, 60] s interval. Also, we have considered a length of 0.4 s for the TRFs. Row B in Fig. S3 shows
examples of the attended and the unattended TRFs for each of the two cases. In case 1, there is a large
difference between the magnitude of the M100 components in the attended and the unattended TRFs,
while in case 2, this difference is small compared to our estimation accuracy. We have also considered
three higher latency components in the TRFs which are not modulated by the attentional state, similar
to the M50 component. As shown in row A of Fig. S3, a zero-mean Gaussian i.i.d. noise is added to the
TRF components as well. Note that similar to the EEG simulation, we have used a Gaussian kernel with
the standard deviation of 10 ms to smooth the TRFs. This smoothness property is also observed in TRFs
estimated from experimentally-recorded MEG signals (Ding and Simon, 2012a,b).

4.2 Parameter Selection

For the encoder estimation parameters in Algorithm 1, we have considered consecutive non-overlapping
windows of length 0.25 s, i.e., W = 50, resulting in K = 240 instances, and we have assumed the
same 0.4 s length for the TRFs, i.e., Le = 80. We have chosen � = 0.005 through cross-validation and
� = 0.9167, which results in an effective window length of 3 s for encoder estimation. Considering the
smoothing Gaussian kernel used in the forward model, we have used the Gaussian dictionary matrix
G

0

2 R(Le+1)⇥(Le+1) for each speaker in the encoder estimation step to enforce smoothness in the TRFs.
The dictionary columns consist of overlapping Gaussian kernels with the standard deviation of 10 ms,
whose means cover the 0 s to 0.4 s lag with Ts=5 ms increments. As a result, considering the simultaneous
estimation of the two TRFs, the overall dictionary matrix would be G = diag (1,G0,G0).

We have used the FASTA package (Goldstein et al., 2014) with Nesterov’s acceleration method to
implement the forward-backward splitting algorithm. All the prior distribution parameters of the state-
space models are set similar to the EEG simulation in the paper, where a

0

= 2.008, b
0

= 0.2016, and
the prior parameters for the attended and unattended distributions were tuned based on a separate 15 s
sample trial. For the real-time state-space estimator, we have used a sliding window of length 15 s with a
fixed forward-lag of 1.5 s, i.e., KA = b15fs/W c and KF = b1.5fs/W c. The sample trial for tuning the
distribution parameters can be thought of as an initialization step for the estimator prior to its real-time
application.

4.3 Estimation Results

Figure S4 shows the results of our estimation framework. Row A contains the estimated TRFs for the
encoding model. The major components of the TRFs are retrieved in the estimates while the `

1

-norm
penalty in Eq. (S1) has significantly denoised these components as compared with the original noisy
versions in row A of Fig. S3. Row B in Fig. S4 displays the extracted magnitudes of the M100 components
from the estimated TRFs at each instance. The attention marker in this case is defined as the magnitude of
the M100 component, where the M100 component is calculated as the minimum value of the TRF estimate
around the 100 ms lag. Notice that there is a significant statistical difference between the extracted M100
components for the attended and unattended speakers in case 1, while the estimated M100 components are
highly variable in case 2 and do not show a strong attention modulation effect.
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Figure S3. The TRFs ⌧ (1)t and ⌧
(2)

t used for the simulation model in Eq. (S26). A) TRFs for case 1 (strong
modulation in M100 components) and case 2 (weak modulation in M100 components). B) Snapshots of
the attended and unattended TRFs for the two cases.

Rows C and D of Fig. S4 show the output of the batch-mode and real-time state-space estimators,
respectively. In case 1, both the batch-mode and real-time estimators perform well in tracking the attentional
state. Note that the sharp drop of the attention probability near ⇠ 30 s in Row D is due to the fact that
at each instance the real-time estimator does not observe the attention markers beyond the 1.5 s forward
lag, whereas the batch-mode estimator estimates the probabilities given the entire trial. In case 2, the
batch-mode estimator performs well even though the M100 components are not visually indicative of the
attentional state. However, the classification confidence decreases considerably specially in the (30, 60] s
interval. The real-time estimator in case 2 closely follows the batch-mode estimator, but is more sensitive
to the fluctuations of the extracted M100 components. Thus, its performance undergoes further degradation
going from case 1 to 2, as compared with that of the batch-mode estimator. The red arrows in rows C
and D of case 2 in Fig. S4 mark instances where the less robustness of real-time estimator resulted in
misclassifications, while the batch-mode estimator classified the attended speaker correctly.
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Figure S4. Estimation results of application to simulated MEG data: A) Estimated TRFs for case 1 (strong
modulation in M100 components) and case 2 (weak modulation in M100 components). B) Estimated M100
magnitudes as the attention markers. C) Outputs of the batch-mode estimator as the estimated probability
of attending to speaker 1. D) Outputs of the real-time estimator as the estimated probability of attending
to speaker 1. The real-time estimator is less robust to the statistical fluctuations in the extracted M100
components, which can result in misclassifications as shown for two example instances marker by red
arrows. However, it follows the general trend of the batch-mode estimator closely despite its online access
to data.
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It is worth noting that as we are using an encoding model in this case, the overall delay in estimating the
attentional state is the forward-lag window, i.e., 1.5 s, and unlike the case of using the decoding model, the
encoder lag does not contribute to the delay. Our analysis of the effect of KF on the MSE of the real-time
estimator with respect to the batch-mode was nearly identical to that presented for the EEG simulation, and
is thus omitted for brevity.
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