Diffusion Kurtosis - a Sensitive Marker For Traumatic Brain Injury

Jiachen Zhuo, Su Xu, Julie Hazelton, Roger Mullins, Jonathan Simon, Gary Fiskum, Rao Gullapalli

Dept. of Radiology, University of Maryland School of Medicine
Dept. of Electrical & Computer Engineering, University of Maryland College Park
Dept. of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine
Program in Neuroscience, University of Maryland Baltimore
Declaration of Relevant Financial Interests or Relationships

Speaker Name: Jiachen Zhuo

I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.
Traumatic Brain Injury

- Traumatic injuries remain the leading cause of death in children and in adults aged 45 years or younger.

 - **Primary injury:** Structural changes due to mechanical forces

 - **Secondary injury:** Widespread degeneration of neurons, glial cells, axons

 - Patient outcome is hard to predict!

- The major focus of TBI management:
 Prevention of secondary injuries
Diffusion Tensor Imaging in Evaluating TBI

Abnormal DTI despite negative conventional MRI and CT findings!
Does normal DTI mean no injury?

- **Acutely post injury:**
 - Increased FA
 - Reduced MD
 Possible cause: cytotoxic edema, reduced extracellular space, etc.

- **Chronic stage:**
 - Reduced FA
 - Increased MD
 Possible cause: edema, cellular destruction, axonal degeneration, etc.

- At sub-acute stage, DTI parameters may undergo pseudo-normalization1,2.

- Does this mean there is no injury?

1MacDonald et al., 2007. 2Mayer et al, 2010
Beyond DTI: Diffusion Kurtosis
- the Non-Gaussian property of water diffusion

Uniform water diffusion

Non-uniform water diffusion

\[\ln \frac{S(b)}{S(0)} = -bD \]

Non-Gaussian (DKI*)

\[\ln \frac{S(b)}{S(0)} = -bD + \frac{1}{6} b^2 D^2 K \]

Diffusion Kurtosis
- the Non-Gaussian property of water diffusion

\[
\ln \frac{S(b)}{S(0)} = -bD
\]

\[
\ln \frac{S(b)}{S(0)} = -bD + \frac{1}{6} b^2 D^2 K
\]

• Diffusion kurtosis
 ▪ tissue complexity (heterogeneity)\(^1\)
 ▪ higher sensitivity in characterizing tissue microstructure\(^2,3\)

Our Goal

• To investigate whether diffusion kurtosis parameters provide information over and beyond that available from DTI parameters regarding tissue damage following TBI

• Whether DKI is sensitive to microstructure changes in grey matter
Animal Preparation

Controlled Cortical Impact (CCI) injury model*

- Velocity: 5 m/sec
- Depth: 2.5 mm

- Rats (Adult male Sprague-Dawley): n = 12
- Imaging (Bruker 7T):
 - baseline (1 day before injury)
 - acute stage (2 hours post injury)
 - sub-acute stage (7 days post injury, n = 7)
- Histology: 7 days post injury after imaging

DKI protocol:
- 30 directions
- 2 b-values (b=1000 and 2000 s/mm²)
- 2 averages
- TR/TE = 6000/50 ms

Parametric maps of a representative rat base

2 hour

7 day

FA MD MK T_2-weighted
Regional evolution of DKI parameters

Injured site

\[\begin{align*}
\text{MD} (\times 10^{-3}\text{ mm}^2/\text{s}) & \\
\text{HC-ips} & < \text{CTX-ips} & > \text{HC-con} & < \text{CTX-con}
\end{align*} \]

\[\begin{align*}
\text{FA} & \\
\text{HC-ips} & < \text{CTX-ips} & > \text{HC-con} & = \text{CTX-con}
\end{align*} \]

* : \(p < 0.05 \)
*** : \(p < 0.0005 \)
Tissue microstructure & kurtosis

a Astrocytes in healthy CNS tissue
- Not all astrocytes express detectable levels of GFAP
- Astrocytes have non-overlapping domains
- Little or no proliferation

b Mild to moderate reactive astroglia
- Most astrocytes are GFAP+
- Preservation of individual domains
- Little or no proliferation

c Severe diffuse reactive astroglia
- Most astrocytes are GFAP+
- Disruption of individual domains
- Proliferation

d Severe astroglia with compact glial scar formation
- Compact Glial Scar
- Bordering along regions of tissue damage & inflammation due to:
 - Trauma
 - Ischemia
 - Cytotoxicity
 - Infection
 - Autoimmune
 - Inflammation
 - Neoplasm
- Inflammatory cells, infectious agents, Non-CNS cells etc.

Increased severity of injury

MK ↑

Sofroniew & Vinters, Acta Neuropathol 2010
Diffusion Kurtosis - Imaging Marker for Astrogliosis?

Sham

Rat A

Rat B

Pair-wise cluster plot

Blue: baseline Red: 7 day post injury

* Baseline ○ 7 day post injury
Correlation between histology & MK

Contralateral Cortex

- **Baseline**: MK value around 0.6
- **Mild**: MK value around 0.7
- **Severe**: MK value around 0.85
Conclusion

- We observe a clear association of mean kurtosis with increased GFAP immunoreactivity.

- Mean Kurtosis is increased despite the fact that DTI parameters such as MD and FA were normal.

- Mean Kurtosis appears to be a sensitive marker for mild inflammatory responses, even in grey matter regions and may help in the management of secondary injury.

- Other biological factors (processes associated with neuro-degeneration, microglia, etc.) can also affect mean kurtosis.

- Future studies will focus on understanding how these factors affect diffusion and kurtosis parameters.
Acknowledgements

- CTRIM (Core for Translational Research in Imaging @ Maryland)
 - Da Shi
 - Dr. Alan Mcmillan
 - Steven Roys

- Center for STAR (Shock Trauma and Anesthesiology Research)
 - Jennifer Racz

- MR Research Center
 - Josh Betz

- University of Georgia
 - Dr. Lily Wang

- University of Florida
 - Dr. Angelos Barmoutis

- New York University
 - Dr. Jens Jensen

- National Institute of Drug Abuse
 - Dr. Yihong Yang

This work was partly supported by: US Army W81XWH-07-2-0118
Thank you!