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Depireux, Didier A., Jonathan Z. Simon, David J. Klein, and be quantitatively derived and employed to predict responses to
Shihab A. Shamma.Spectro-temporal response field characterizatigfiovel stimuli.

with dynamic ripples in ferret primary auditory cortekNeurophysiol Traditionally measuredesponse areasre inadequate be-

85: 1220-1234, 2001. To understand the neural representatloan[Jse they rarely include response dynamics and cannot be

broadband, dynamic sounds in primary auditory cortex (Al), w sgd to predict responses quantitatively. An alternative is the
characterize responses using the spectro-temporal response T

(STRF). The STRF describes, predicts, and fully characterizes figsPOnse field (RF) (Schreiner and Calhoun 1994; Shamma et
linear dynamics of neurons in response to sounds with rich spectf- 1995), a static, purely spectral function analogous to the RA

temporal envelopes. It is computed from the responses to elemeng@xgept for the use of broadband sounds (but see Nelken et al.
“ripples,” a family of sounds with drifting sinusoidal spectral enve1994; Sutter et al. 1996). A dynamic generalization of the RF

lopes. The collection of responses to all elementary ripples is tieethe spectro-temporal response field (STRF), a characteristic
spectro-temporal transfer function. The complex spectro-tempofghction of a neuron obtained using broadband sounds (Aertsen
envelope of any broadband, dynamic sound can expressed asghg Johannesma 1981; deCharms et al. 1998; Eggermont 1993
linear sum of individual ripples. Previous experiments using rlppleér]d references therein: Escabi and Schreiner 1999: Kowalski et

with downward drifting spectra suggested that the transfer functioné§ 1996a; Kvale and Schreiner 1995; Theunissen et al. 2000)

separable, i.e., it is reducible into a product of purely temporal a . . . L : .
purely spectral functions. Here we measure the responses to upwar chematic of an idealized STRF s illustrated in Fig. 1.

and downward drifting ripples, assuming reparability within eac ual_'tat'vely' its spectral axis ref_lgcts the range of frequenc_les
direction, to determine if the total bidirectional transfer function ifhat influence the response or firing rate of the neuron being
fully separable. In general, the combined transfer function for tweharacterized, and its temporal axis reflects how this influence
directions is not symmetric, and hence units in Al are not, in generghanges as a function of time. Positive-valued regions of the
fully separable. Consequently, many Al units have complex respor8&@RF describe excitatory influence, and negative regions de-
properties such as sensitivity to direction of motion, though mostribe inhibitory influence. The interplay between the spectral
inseparable units are not strongly directional_ly selective. We _shthd temporal axes can give multiple interpretations to the
that for most neurons, the lack of full separability stems from o!lffe%TRF' e.g., as a time-evolving spectral response field or a
e e oo b o soncean of impuis respanses abeled by feguency band
the neural inputspof these Al units. P g 'ber the last few years, we have developed new methods to
' derive the STRFs and characterize the responses of both single
and multiple units in the ferret Al (Kowalski et al. 1996a,b).
These methods use “moving ripples”: time-varying broadband
INTRODUCTION sounds with sinusoidal spectral envelopes that drift a constant
velocity along the logarithmic frequency axis. Figure 2 illus-
tes the spectrogram of such a stimulus. Neuronal responses
re vigorous and well phase-locked to these spectral and tem-
:

Only a few general organizational features are known
primary auditory cortex (Al). They include a spatially ordere
tonotopic axis (Evans et al. 1965), bands of alternating binau
response properties (Imig and Adrian 1977; Middlebrooks

al. 1980), and a variety of other response features that chal faponent of the response enables one to constrasfer
systematically along the isofrequency planes such as threshgidstions A transfer function can be inverse-Fourier trans-

(Heil et al. 1994; Schreiner et al. 1992), bandwidths (Schreingfq 1o obtain the STRF that characterizes a unit's dynamics

and Sutter 1992), FM selectivity (Heil et al. 1992; Mendelsog,,4 selectivity along the tonotopic axis.

et al. 1993; Shamma et al. 1993), and asymmetry of responsg, jeyeloping these measurement and analysis methods, we
areas (RAs; the span of frequencies that influence, boflle o fundamental assumptions. The first is that the re-
through excitation and |nh|b|t|0n, the' response of a 'ceI onses are substantially linear with respect to the time-varying
(Shamma et al. 1993). To derive a functionally coherent p'CtL_J%_Eectral envelope of stimuli. In particular, this implies that the
of these maps, it is necessary to integrate these features within

a comprehensive descriptor of the unit responses; one that ean — — .
The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby markaxekettisemerit
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ral envelope modulations over a range of ripple velocities
d densities. Measuring the amplitude and phase of the locked
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Spectro-Temporal Response Field response field. It also implies a unit that responds equally well
+1- g " to upward and downward moving ripples and hence has nec-
essarily a symmetric transfer function magnitude with respect
4 to direction (Watson and Ahumada 1985). By contrast, cells
that are only quadrant separable necessarily respond in asym-
metric fashion with respect to direction, i.e., are direction

- . . sensitive.
- We restrict our presentation in this paper to measurements

with singly presented moving ripples in contrast to simulta-

5 neously presented ripples discussed in Klein et al. (2000).

' There are several goals of this paper. We present a method

25 — of measuring the complete descriptor of the linear spectro-
250 temporal properties of an auditory cell, the STRF. We describe

0
Time (ms) examples of STRFs measured in Al and summarize the distri-
t bution of the STRF and transfer function parameters encoun-
tered. We show that there is a directional sensitivity in the

Fic. 1. An idealized spectro-temporal response field (STRF) with spectrr sponse t? the Upward Versus dow.nward moving components
and temporal 1-dimensional sections. The time axis is convolved with the tif#é @ sound’s spectral envelop_e_:. This breaks the symmetry of
axis of the spectral envelope of a stimulus (as in Fig. 2) to predict the celfall spectro-temporal separability and produces quadrant sep-
response. For instance, a burst of energy between 1 and 2 kHz will producgrability. We propose measures to quantify quadrant and full
maximum firing rate after about 20 ms followed by inhibition. separability. Finally, we discuss the significance of the results

. . and their relationship to results from similar auditory and
response to the spectro-temporally rich stimulus—whose eaﬂialogous visual experimental paradigms

velope can always be described as the sum of multiple moving
ripples—will be the sum of its responses to the individual
ripple components. This assumption was confirmed by sUeETHODS

cessfully predicting responses to the superposition of multigkurgery and animal preparation
ripples (Kowalski et al. 1996b).

The second important assumption deals with the separabi[l) Data were collected from a total of 11 domestic ferrdthigtela

WOrius) supplied by Marshall Farms (Rochester, NY). The ferrets
of the temporal and spectral aspects of the responses. Sp‘%é%’e anesthetized with pentobarbital sodium (40 mg/kg) and main-

ically we have demonstrated in other reports that temporal agaghed under deep anesthesia during the surgery. Once the recording

spectral transfer functions can be measured independentlysedsion started, a combination of ketamine (8 mat - hY,

each other and then combined with a simple product to co#yazine (1.6 mg kg * - h™*), atropine (10ug - kg *- h™"), and

pute the total transfer function (Kowalski et al. 1996a). Th@gexamethasone (4@g - kg = - h™") was given throughout the

importance of this finding stems from its experimental imp”gxperlment by continuous intravenous infusion, together with dex-
trase, 5% in Ringer solution, at a rate of 1 nkig~* - h™* to maintain

cations for measuring the STRFs and theoretical Consequenr{:le abolic stability. The ectosylvian gyrus, which includes the primary

forthg blophyS|_caI and funct!qnal model§ of the_STRFs'. On ﬂ&%ditory cortex, was exposed by craniotomy and the dura was re-
experimental side, separability makes it possible to infer rgscied. The contralateral ear canal was exposed and partly resected,
sponses to all ripple velocities and peak dens_ltles based on Oe_EHM a cone-shaped speculum containing a miniature speaker (Sony
a pair of temporal and spectral transfer functions. Without thisDR-E464) was sutured to the meatal stump. For more details on the
assumption, measuring the two-dimensional transfer functisargery, see Shamma et al. (1993).

is difficult because of the extended times needed to collect

adequate spike counts. On the theoretical side, separability Ripple Stimulus

suggests that certain features of the STRF (as we shall discuss " |~

Frequency (kHz)

in detail in the following text) are formed by independent (and 8 s
likely sequential) spectral and temporal processing stages. ~4
In our earlier study (Kowalski et al. 1996a), separability was é
validated for ripples moving only in one direction (spectral <,
envelope moving downward in frequency), a notion also 2 60 dB
known as “quadrant separability.” In this report, we compare g 1
the separable functions (spectral and temporal) across upward =)
and downward quadrants. If the functions are the same across E.S
guadrants, the responses are “fully separable” (i.e., they are
separable); otherwise they are quadrant separable, which is a 25 50 dB
(specialized) form of inseparability. 0 500 1000

+

Like quadrant separability, full separability has experimental Time (ms)
and theoretical implications. On the experimental side, fully
separable STRFs can be measured with either upward or down-

. . . IG. 2. Envelope of a moving rippley = 2 Hz,() = 0.4 cycle/octavep =
ward moving npples. Theoretlca”y' fu”y separable reSponS(i% °, with a 10 %B AM arour?d ngO dB base with sp)éctral and temporal

imply an STRF that .iS fully decomposable into the product af gimensional sections. Ripple phase changes linearly with time and spectral
a purely temporal impulse response and a purely spectsadition (in octaves).
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Recordings or by Eg. 1 and the same identity, positiue, negative(), and an

. . . ) ) added phase shift aof.
_ Action potentials from single units were recorded using glass- The stimulus bursts had an 8-ms rise/fall time and duration of 1.0
insulated tungsten microelectrodes with 5-T)Mp impedance at 1 1.7 5, repeated every 34 s. All stimuli were gated and fed through
kHz. Neural signals were fed through a window discriminator, and thg, equalizer into the earphone. Calibration of the sound delivery
time of spike occurrence relative to stimulus delivery was stored USiBfstem (to obtain a flat frequency response up to 20 kHz) was
a computer. In each animal, electrode penetrations were made ort ormed in situ with the use ofi&-in Briiel and Kjaer 4170 probe
onal to the cortical surface. In each penetration, cells were typicafyicrophone. The microphone was inserted into the ear canal through
isolated at depths of 350—6@0m corresponding to cortical layers Il tha wall of the speculum to within 5 mm of the tympanic membrane.

and IV (Shamma et al. 1993). In many instances, it was difficult tphe speculum and microphone setup resembles closely that suggested
isolate reliably a single unit for extended recordings, and hengg Evans (1979).

several units were recorded instead. Such data were labeled “multiunit
recordings” and are explicitly designated as such and separated from

the single-unit records in all data presentations in the paper. ~ Theoretical considerations
DEFINING THE STRF. The fundamental tool to measure linearity and
Acoustic stimuli separability of primary cortical cell is to measure their STRF. The

o ) o _ . STRF is a spectro-temporal function STRF). The linear response

All stimuli are computer synthesized. For each unit isolated, initightey(t) of a cell is related to its STRE(X) and the spectro-temporal
tests are carried out using tonal stimuli to measure the basic frequeBgyelope of the stimulus(t, x) by y(t) = [ fdt'dxSt’ — t, X) - STRE(,
response at several intensities to determine the best frequency (BF).e., convolution along the time dimensiband integration along
and response threshold. All other stimuli used in these experimef{g spectral dimensiorn
have broadband spectra with a sinusoidally modulated (or rippled)The STRF is measured through its two-dimensional Fourier trans-
envelope. We used the knowledge of the cell's BF to adjust th§m, or transfer functiorT(w, Q) = F.o[STRFE — X)], and then
frequency range of the broadband sound so that the cell's excitatfiyerse transformed to compute the STRF, where the coordinates dual
and inhibitory regions lay well within the frequency range of thgg t andx arew and (), respectively (see Fig. 3). By measuring the
sounds. ) . sinusoidal component with temporal frequenayof the response

In practice, it is hard to generate noise and then shape it with filtgfs (t) of a cell to a ripple of specific ripple velocitw and ripple

toa desir_ed dynamic spectral enveI(_)pe,_so we generate ripples OVBEAsity(), we can obtain the transfer functidigw, Q) at one point in
range of five octaves by taking logarithmically spaced pure tones wifi — () space (Depireux et al. 1998)

random (temporal) phases. The amplit&fe x) of each tone is then

St x) = L[1+ AA-sin(2m-w-t+ 2w Q- X+ D)] 1) Vao(t) = J J dt’dx' STRAY, X') sin 2aw(t — t') + QOx']
where x = log, (f/fy) is the number of octaves above the base ‘
frequencyf,. The ripple envelope resembles a drifting one-dimen = [T(w, Q)| sin[2mwt + D(w, Q)] )

sional grating as illustrated in Fig. 2. Five independent parameteril_his way, we derive the amplitud&w, Q)| and phaseb(w, Q) of

characterize the ripple envelope: background level or loudness of me complex transfer functiohw, ©2) by measuring the amplitude and

stimulus (); AM of the ripple (AA) in percentage or decibels; rlpplephase of the (real) response of the cell. Note that the use of complex

velocity (w) in units of cycles/s (or Hz); ripple densit$)j in units of . . i 2=
cycles/octave; and the initial phase of the rip{pleThe spectra consist numl_)ers IS not theoretically jnecessary, bUt. it does simplify th_e 'c_al-
lations in the transfer function space considerably. By the definition

either of 20 or 100 tones per octave equally spaced along the Iorg > ) :
- : : . : the transfer function, it follows that the inverse Fourier transform
rithmic frequency axis or with a spacing of 1 tone/Hz with a FaT(W' Q) is the STRF of the cell

amplitude decay producing equal power per octave. The spec‘?
typically span five octaves (e.g., 0.25—-8 kHz) with the range chosen

— g1

such that the response area of the cell tested lay within the stimulus STRRLX) = FiolTwal ®)
spectrum. The choice of a density of 20 or 100 tones per octave does
not alter the cortical responses; hence we do not specify which density Q- AQ —
Wasused. 2OOOIC>:OC>~--O()<:D<:>OO1

A single-ripple stimulus at overall levél dB SPL would typically © 0 o0joro 00 0jofo 00
be composed oN logarithmically spaced components, eachlLat 0 0 010,0 0 + 0 0fo]Jo o o
—10log,o (N) ~ L —20 dB forN = 101. The overall stimulus level [ o o :o, 0o+ o olofo o o]
was chosen on the basis of threshold at BF; typidallyas set 10-20 6 06 00004 oolooo o
dB above threshold. High levelt ¢ 70 dB) were avoided to ensure —— -¢: — ool o—o—ob
the linearity of our stimulus delivery system. The amplitude of a S S B A w

single ripple was defined as the maximum percentage or logarithm
change in the component amplitudes. Ripple amplitudes were either
90% (linear) or 10 dB (logarithmic) modulations. °
The ripple velocitiesv and ripple densitie€ used were determined o ° %
by the response properties of the neuron, but the typical range was 3(=1%, . ... 1., . . A(=29)
|w] < 25 Hz (with some units requiring up to 100 Hz) agy < 1.6 —
cycles/octaves (with some units requiring up to 4 cycles/octaves)Fic. 3. To measure the complete ripple transfer function of an arbitrary
Single ripples were always presented with= 0. STRF, we would need to measure the response of the cell to all the ripples
By the convention established Bq. 1, a ripple whose spectral represented by large circles. The small circles correspond to redundant ripples

. : . P ..y complex conjugation. The value of the transfer function alongwthe 0O
envelope is moving downward in frequency, as in Fig. 2, has pOSItlgéis is set to 0, because the modulation transfer function is not well defined

w anq positivet; eqqlvalently, it can be descrlbed.by a ripple W'”}here. Quadrant separability permits one to measure only the responses to
negativew and negative(), and an added phase shift of by Eq. 1 (ipples enclosed by the solid boxes. The transfer function in the dashed box is
and the identity sing) = sin (—a + ). A ripple whose spectral equal to the transfer function in the bottom half of the vertical box but with the
peaks are moving upward in frequency has negatiead positive(), opposite phase.

°
°
°
°
°
°
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°
°
°
°
°
°
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Because STRE(x) is real butT(w, ) is complex, there is complex which is the proportion ofl ’s total power & ;A2), which is not

conjugate symmetry accounted for by its best separable approximation. Values near zero
. indicate that only the first singular value has a large nonzero value
Tw, =) =T (w, Q) (4)  (hence the STRF is separable). Values approaching 1 indicate an
which also holds for the Fourier transform of any real functiort of increasing dose of inseparability. . _
andx. The handy measure aig,, brands inseparability by its strength

but otherwise reveals nothing of its nature. Therefore we examine the

DEFINING AND ASSESSING SEPARABILITY. Separability is an im- origin of inseparability by other means. Specifically we shall analyze

Forta_nt p_ropertyhof tfhe tre}nsfe_r functfions._A fu:‘Iy Zepa;rable trar}sfﬁ{ree factors that give rise to inseparability

unction is one that factorizes into a functionwfand a function o : : . :

Q over all quadrantsT(w, Q) = F(w) - G(2). This implies that 1) The relative power in the first and second quadrants

STRF¢, ) is time-spectrum separable: STRE{ = IR(t) - RF(X). In P,— P,

this case, one needs only measure the transfer function for atla =5 p

convenieniv and for allw at a convenienf). F(w) andG((1) are each 2ot

complex-conjugate symmetri¢(—w) = F*(w), G(—Q) = G*(Q)] whereP, = power in quadrant 1 angl, = power in quadrant 2. Note

because IR} and RF{) are real, so one needs only consider théhat power is measured by summing the squared magnitudes of all

positive values of each. This dramatically decreases the number@hsfer function values within the appropriate quadrant. An absolute

measurements needed to characterize the STRF. value ofa, near one implies strong selectivity of the responses to the
A transfer function may also be only partially separable in that it igirection of ripple movement and hence strong inseparability.

separable only for ripples moving in a given direction (upward vs. 2) The asymmetry of the spectral transfer function aroing 0 is
downward). In this case, the transfer function is called quadrant
separable and can be expressed as the product of two independent 20-0G1() - G3(Q)

. as=1-—
functions \Ea-olGiQ)P Sq-0GA Q)P

®)

©
Tw, Q) ={ FiwGy() w>0,0>0 (5) Wwhere the quantity inside the large absolute value bars is the (com-
FwG,(Q) w<0,0>0 plex) correlation betwee,(€2) andG,(Q). Indexa, values near one

where the subscript 1 indicates the> 0, Q > 0 quadrant, and the |mp|y_ strong asymmetry _(|.e., lack of correlatlo_n) in the _t_ransfer
subscript 2 thev < 0, () > 0 quadrant (see Fig. 3). Note that by realityfunctlon to different directions and hence strong |nseparablllty.

of the STRF, the value of the transfer function in quadrants 30, . 3) The asymmetry of the temporal transfer function aroung 0

Q < 0)and 4 w> 0, < 0) is complex conjugate to the value in'S

quadrants 1 and 2, respectively. In this case, the STRF is not separable S oF (W) - Fa(— W)

in spectrum and time but is the linear superposition of two functions, a=1- o 1 z (10)
one with support only in quadrant 1 (and 3) and one with support only VB dFs W)+ S ol Fo(— W) P

in quadrant 2 (and 4). Qere the quantity inside the large absolute value bars is the (com-

Separability need not be an all-or-none property but rather can - ol
assessed in a graded fashion. To do so, we apply singular va\%%x) correlation betweeR, () andF5(—w). Indexa, values near 1

decomposition (SVD) of the matriX of measured transfer-function imply strong asymmetry (i.e., lack of correlation) in the transfer
values (Haykin 1996)T can be viewed as a matrix created b)junctlon to different directions, and hence strong inseparability.
sampling the ideal transfer function at regularly spaced discrete val@@&§ECT OF FINITE SAMPLING. We measure the transfer function of
of w and Q with random noise added to each sample. SVD decorgells by varying two parameters, ripple velocity and ripple density.

posesT as For consistency’s sake, we used the same range of parameters for a
. ) majority of cells. However, for some cells, the transfer function has
T=U-A-V, A=diag(yAs o h)y A=A = .0, not decreased significantly at the “edges” (for instance, in Figtige

temporal transfer function is clearly still strong-a64 Hz and above).
This is equivalent to multiplying the true transfer function by a
rectangular function which is zero everywhere except betweés
and 64 Hz, over which range it is 1. In the dual Fourier space of the
Here t denotes the Hermitian transpose &hdV are matrices transfer function space, that is, in the STRF space with coordinates
containing “singular” row vectors; andv; corresponding to spectral andx, this corresponds to convolving along each dimension the STRF
and temporal cross-sections, respectively, of separable transfer funith the Fourier transform of a rectangular pulse, that is, with
tions. Thus the SVD can be viewed as decompodinigto a linear sin (x)/x. This leads to spurious oscillations in thisplayof the STRF
sum ofn separable matrices, each weighted by its ability to approas can be seen in Fig.C9and others. These oscillations would
imateT as a weighted product of two vectors asHq. 6,as given by disappear if we had measured the transfer functions all the way to
the “singular values”™’s. Because of the presence of noise in théheir vanishing values.
measurement, the's are all expected to be nonzero with their values Since all the characteristic parameters in this paper (see Table 1) are
decreasing monotonically to a noise floor, which depends on the lederived in transfer function space, it does not affect the analysis, but
of the noise. it may lead to misleading features in the STRFs.
With respect to this floor, the number of significant singular valu
depends on the nature of the measured transfer fun€tidhe closer DEVIATIONS FROM LINEARITY.
T is to being separable, the more dominant the first singular value
will be over its counterparts, which share the residual error in
manner that depends on the precise nature of the inseparability.

have used this fact to define a single measure of the “distance” of {fjgy e e ctification is primarily due to the positivity of spike rates
_syftem from separability or alternatively the “degree of Insep"’“"’Ib('rdinarily the steady-state response to a flat spectrum is significantly
y" asvo less than half the peak firing rate of the unit); the distortion of a
sinusoid due to half-wave rectification does not affect the phase of the
asvp = (1 - A{/( > A?))

=D Ao 6)

Because the STRF is a measure of

the linear part of the dynamics of a cell, we only consider effects that

might modify the measurement of the first component of the Fourier
nsform of the period histograms. The most prominent nonlinearities
& (approximate) half-wave rectification and compression. The half-

(7) response, and its effect on the amplitude of the first Fourier compo-
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TABLE 1. Characteristic parameters of STRFs shown

STRF fl, kHz f2, kHz T3, MS 73, ms o, deg 0, deg 8, % €, % Single/Multiple
Fig. 6 1.1 1.1 21 34 —24 —46 3 6 Mult
Fig. 8
A 1.5 1.9 25 23 4 —69 3 14 Mult
B 1.4 1.6 32 23 —43 —58 8 29 Mult
C 1.1 2.0 20 35 -21 —105 5 25 Mult
Fig. 9
A 3.8 4.5 29 29 —36 —-110 3 4 Mult
B 1.5 1.8 21 20 7 —57 2 8 Mult
C 3.9 4.6 13 5 —68 —67 3 36 Sngl
Fig. 10
A 0.56 0.68 21 12 —26 —63 2 6 Sngl
B 0.49 0.57 25 14 40 -35 9 24 Mult
C 1.2 1.14 47 43 4 140 4 11 Mult

STRF, spectro-temporal response field.

nent is a constant factor, independento&nd(). The distortion due in this paper, the values dfcorrespond directly to the first component
to compression or saturation, similarly, does not affect the phaseadffthe Fourier transform.
the Fourier transform components of the response and similarly af-Once the ripple transfer function has been measured, it can be
fects the amplitude only by an overall constant factor for stimuli ahverse Fourier transformed to display the STRF. Since the transfer
moderate level. function is typically measured over fewer than 8 points along each
Nonlinearities of other types, such as static nonlinearities, if theyjmension in each quadrant, the resulting STRF as computed would
exist, are quite small and have not shown up in our studies. Ulisok very jagged even if the underlying STRF was smooth. We
mately, the proof of linearity, and the relevance of the STRF, is founberefore interpolate to a smooth STRF for display purposes, padding
when one compares the predictions of the response of a cell to a rtew transfer function with zeros to a size of 8464. All statistics and
sound compared with the actual response. We have not found gmgdictions use the measured unsmoothed STRF.
evidence of systematic deviation between predicted and actual re-
sponse that would indicate the presence of static nonlinearities. A-L6[T

Data reduction -12f%

Many of the data analysis methods described here are similar or-0.8
straightforward extensions of those developed earlier in Kowalski et,
al. (1996a), and those will be only briefly reviewed here. Figures 4 an@‘o-4 _
5 illustrate the nature of the responses to the ripple stimuli and thé.
analysis to extract the spectral (Fig. 4) and temporal (Fig. 5) transfeg
functions. In Fig. 4, the ripples are presented at 8 Hz for ripple
densities from—1.6 to 1.6 cycle/octave in steps of 0.2 cycle/octave.
Each stimulus is presented 15 times. 0.8

For each ripple density, we compute at 16-bin period histogram
based on the responses starting at 120 ms (to exclude the onset.2
response; Fig. B). A 16-point Fourier transform (FFT) is then per-
formed on the period histogram, and the amplitude and phase of thel.6{ & ot o - o
first component is taken to be the amplitude and phase of the transfer 9 250
function. If the modulation of the response was that of a purely lined8 &,

0.0

226/20a04.m2

500 750 1000
Time (ms)

system, the higher FFT coefficients would be negligible, but becausg € = -0.4 cycfoct 300 [TOwe )|
of half-wave rectification and compression, they sometimes are si% 40 P - % 20
nificant. In generall, () can be written as 0 z 0
80 2
TolQ) = [T (12) ey Q"OZW?L e TR e o P
x / -
wherej = V —1. Figure £ illustrates the magnitudd,,(Q2)| and the 0 = & S e
unwrapped phasé, (Q) of the transfer functiorT, (). The ripple 80 - B an e
density at whichT,(Q)| is a maximum is designated &,, (= 0.0 0 (= 00eydlocy 2 g p
octave/cycle in Fig. @). Z ~ _an e
0 87 -

Analogous steps are followed in measuring the temporal transfer 35 20 95 100 s e R Y T
function as shown in Fig. 5 where ripples are presented at 0.2 Time (ms) ’ ‘Qeeycloct) '
cycle/octave for ripple velocities from 24 to 24 Hz in steps of 4 Hz. ) ) ) _ _ o

Note that in the previous paper (Kowalski et al. 1996a), we FIG: 4. Data analysis for ripples of fixed ripple velocity and varying ripple
weighted the measurement of the first component of the Four%qnsitiesA: raster plot of responses. Each point represents an action potential,
transforms of the period histograms by a weighted sum of the hig each ripple stimulus is presented 15 times. Note the position of the peaks

. . changes linearly with ripple densitB: period histogram for 3 example ripple
frequency components of the transform. This, however, is not COljksities, with their sinusoidal fit€: magnitude and phase of the period

patible with the idea of a linear system so that the resultant STRFg&ogram fits. With the phase convention used for these stimuli, ripples with
equivalently the ripple transfer functidnwould not be expected to be < 0 (quadrant 4) are equivalent to ripples with< 0 (quadrant 2), using
the best possible predictor of the response to new sounds. Theretheeconversionw, Q, ®) — (—w, —Q, —® + ).
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A _ _ “ by Eq. 4(see also Fig. 3). The STRF is then computed by an inverse
24| Fourier transform (as i&qg. 3 and is illustrated in Fig. B (left). This

interpolated version of the STRF (used for display) is obtained by

usingEq. 3on the transfer function padded with zeros at highand

|Q| (see Fig. &).
8 ‘ Deriving STRF parameters from the phase functions
S ok : Numerous parameters can be derived from the STRF (or equiva-
E/ 1o, =02co lently the transfer function) that are analogous to traditional response

- 65dB measures such as BF, tuning curve bandwidth, and latency. Most of
these parameters are best derived from analysis of the phase of the
transfer functions (Fig. 7).
We model the phase of the transfer function within each quadrant
dYw, ), g = 1, 2 (seeEq. 2 as a linear function ofv and )

226/20a05.m1

Lo DU, W) = —2awrd + 2708 + x° (13
0 250 Ti Igg(zms) 750 1000
B C whererg is the mean or group delay of the STRF (a portion of which
% 8 = aHz 20 IT(w, )| comes from the response latencyf, = log (f7/fo) is the mean
£ 40 - - @ frequency (in octaves above the base frequency of the rippl&Egee
A = : 820 1) around which the STRF is centered (putting it near the BF),xdhd
803 50 100 150 200 250 S0 is a constant phase angle, for each quadyaihe complex-conjugate

w=8Hz /- symmetry of the transfer function means that these six independent
40w parameters describe the phase everywhere imthe Q) plane. The
convention of the minus sign beforg allows the time-dependent

800 J25 30 75 100 125 _ responses to be functions df{ 7,) as is appropriate for a delay.
w=12Hz § The justification for assuming linear fits of the phase functions has
40 Z =) been discussed in detail earlier in (Depireux et al. 1998) and is

Y 5

0 — strongly motivated by the data (Kowalski et al. 1996a). Note, how-
O 0 Y ¥ I S ever, that the assumption phaselinearity is used only for parameter
i ) ] ) ) ~ estimation and is not assumed in computing the STRF. The first linear
Fie. 5. Data analysis from ripples of fixed ripple density and varying ripplgarm jnEq. 13stems from the fact that auditory units differing in their
VeldocétéecsﬁAr:i raféegﬁ,'ﬁﬂﬂsrﬁzpornesseesatggcfspﬁféfpéﬁiznf}gg izt:gnfgr(’t;” an neural delays will exhibit linear phase dependencw aiith
an . .
example ripgﬁe velocities. No?e how the position%f the peakgof the best ﬁfffere“t slope dependlng_ on delay. Analogous arguments apply for
changes linearly with ripple velocityC: magnitude and phase of the periodUNits that are located at different places along the tonotopic axis: the
histogram fits. response phase of different units (with otherwise identical STRFs)
changes linearly witl) at different rates, depending on the relative
To construct the two-dimensional transfer function, we assurf€nter frequency locations. In both cases, the slopes of the linear
quadrant Separabi”ty, measure the transfer function along the Crd%alse :fUnC“On |nd|CaFe the abSOlUte.Shrrt of the STRF rela.tlve to the
sections shown in Fig. 3, to combine these spectral and temporal créggin, i.e., the mean time delay] relative to the start of the stimulus,
sections as illustrated in Fig. 6. For each quadrant, the transféid the center frequenay, relative to the low frequency edge of the
function is the outer product of the cross-section, divided by tH&ple spectrum. The linear phase model does not assume that the
(complex) value of the transfer function at the crossoverggoint. In  linear phase shiftsrd andxy,, are equal across quadrants, but tono
Fig. 6, the point isW..,, Q..,) = (8 Hz, 0.2 cycle/octave) in quadranttopy suggests thdf, andf 7, should be approximately equal anfi~

1 and W..,, Q..,) = (-8 Hz, 0.2 cycles/octave) in quadrant 2. 73 since the temporal delays of the neural inputs are not segregated by
quadrant. This is shown experimentally in the following text.
TW, ) = T(Wxg ) - TW, Q) T(Wig, Qi) (12 An interpretation ofr,, for each quadrant, is that it is the sum of the

_ _ . ure response latency and (roughly) half the temporal width of the
whereq = 1 andq = 2 are the independent quadrants 1 and 2'.I%TRF. This is in contrast to the STRF's peak delay,r- defined to
practice, the value of the transfer function along the two cross-secti the delay for which the STRF achieves its maximum value, which
was measureq at two different times, giving two measurements of%gy lead or lag,, depending on the constant temporal phase s,ﬂ)ift,
transfer function at each crossover poliflv,.q, {2.g). The results of defined in the following text. Similarlyf,,, for each quadrant may or
the two measurements may differ, and so we use the (_compl%iy not fall on the STRF's best frequen®Fsrp defined to be the
geometn(;lmeag of the two (r;]easured valu(e)s aSJQe divisBgini2, frequency at which the STRF achieves its maximum value, depending
Tef{(pl’vxq' . XTq) . [Tlséwx(}‘_l_ Xq)TZ"f(QWXQ’ ﬁﬂ);] h Idb .. on the constant spectral phase shiit,defined in the following text.

€ ratioT; (W 2cg)/ Tond Wi {2cq), Which should be unity, ™ 'cnyenient convention for interpreting the constant component of

;gﬁlg\;:vtiign(t)éi(te in the system and is used to estimate reliability in tm?e phase is to break up the constant phase ayiyiato two parts

The value of the transfer function along tve= 0 axis is set to zero
because the modulation transfer function is not well defined there, i.e.,
there is no modulation of firing rate around the DC (average) rate wiband ¢ are, respectively, the temporal polarity and spectral asymme-
a frequency of 0 Hz. The value of the transfer function alonglhe try of the STRF. Spectral asymmetry parameterizes the balance of the
0 axis is not measured directly, so the value used is the mean of 8iIERF along the spectral axis about its center. For example, a unit with
value inferred from being the boundary of quadrant 1 and that inferréd= 0 would have it8BFgrein the center of the spectral envelope of
from being the boundary of quadrant 2. the STRF, possibly surrounded by inhibitory regions. A unit vtk

Once the values of transfer functions for quadrants 1 and 2 and thgiwould have itBFsr-at a lower frequency than the center of the
boundaries are measured, the values for quadrants 3 and 4 are giv€RF with an inhibitory sideband aboB#qre A unit with ¢ < 0

X'=—-0+¢, ¥=0+¢ (14)
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FIc. 6. Deriving the spectro-temporal
B |T(w, Q)| transfer function, STRF, and related param-
1.6 eters.A: magnitude of the temporaleft) and

spectral fight) transfer function cross-sec-
tions, normalized by the values at the cross-
over points Eqg. 12. The error bars are com-
puted by the bootstrap method, explained
below. B: the magnitude of the full transfer
function, resulting from the outer product of
the functions inA. C. the STRF of the cell
computed by an inverse Fourier transform of

o
oo

Q (cycloct)
o

0.8 the complex transfer functions. To thight
is the error estimate of the STRF, using the
1.6 same scale multiplied by a factor of 5 (for

5 = ) 0 legibility), resulting in error parameters of
24 -16 -8 0 8 16 24 5 = 0.03 ande = 0.06. See Table 1 for

w (Hz) details.
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would have itsBFgrre at a higher frequency than the center of thé&stimating response variability: the bootstrap method
STRF, with an inhibitory sideband beldBFgr-(see example in Fig.
4C of Shamma et al. 1995). Similarly the temporal polarity parame- Variability in our experiments originates from multiple sources,
trizes the balance of the STRF along the temporal axis about iit€luding internal neural mechanisms (e.g., Poisson-like distributions
center: whether the peak response occurs before or after regiongfofspike times), extracellular recording/identifying methods, and
inhibition, respectively,6 < 0 (“onset response at BF’) & > 0 equipment noise. Quantitative estimates of the reliability of our mea-
(“offset response at BF”"). There is an ambiguity in fixihgnd¢ that  surements is crucial to its analysis and subsequent interpretation. A
we remove by restrictingy to lie between—90 and+90°, while # method of variability estimation that is especially appropriate to these
ranges the full-180 to +180°. See Fig. 7 as an illustration of themeasurements is the bootstrap method (Efron and Tibshirani 1993;
phase behavior in the different quadrants. Politis 1998).
In past reports (Kowalski et al. 1996a@)and¢ could be measured The essence of this method is to use “resamples,” in wiNch
without measuring the transfer function in the upward moving quadamples of bootstrap data are drawith replacementfrom the N
rant 2 by measuring the constant component of the phase in quad@iginal samples of data. Repeating this procedure a large number of
1 (x* = —6 + ¢) and along thav axis, where the constant componentimes creates a population of bootstrap resamples whose probability
of the phase is expected to be the mean across the quadnghts [( distribution is a good estimator of the probability distribution from
X9)I2 = —6; note the change in convention 8f— —# between the which the original data were drawn.
present work and Kowalski et al. (1996a)]. To illustrate this procedure, consider measuring the transfer func-
Because of response variability, we only fit to those points of th®n at a point (v, ). This is done by presenting the same (1)
transfer function that have more than half of the response power in #ténulusN times and constructing a period histogram based oN all
first component of the Fourier transform. Then the fit is done acrosweeps. The amplitude and phase of the first Fourier component of the
the entire two-dimensional phase plane for each quadrant. Ultimatelsriod histogram are assigned to the amplitude and phase of the
our unwrapping method is less than ideal, and estimatesanfd ¢  transfer function. A single bootstrap resampling of the responses will
especially reflect that (Ghiglia and Pritt 1998). have N sweeps, where, because they are drawn from the original
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Q) responses with replacement, some will be duplicated and some will be
A unused. Nevertheless a period of histogram is constructed, and the
®=21Qx2+ ¢-2mwi2+ 0 | ®=2mQx! +¢_2nm;_9 bootstrap estimate of the transfer function is assigned to its first
" d " Fourier component. Performing a large number of bootstrap resamples
results in a population of estimates for the transfer function. This
population has a mean, variance, and higher-order moments. These
moments are estimators of the moments of the original population (of
all transfer functions of all allowable neuronal responses to the stim-
ulus). For example, the standard deviation of all bootstrap estimates of
the transfer function is an estimator of the standard deviation of
measurements of the transfer function. This allows us to put error bars
on our transfer functions and STRFs.

w

®=2nQx! - ¢-2mwr) +0 | ®=2mQx2-¢-2mwr] -0

1 Phase
B -0+

/

Slope =-2 m;

Slope = 27x,, Effects of crossover point errors

Another significant source of error is the difference between the
responses of repeated measurements at the transfer function crossover
points. The ratio of these independent measurem@&nigw, Q %)/
TondWS, Q%) should be unity. When not unity, it reflects the same

riability measured by the bootstrap method but also additional
in this cartoon, the slope is constant for most of the curves, &fr{2mwrJ has systematlc_ error from ha\{lng measured the tw.o t'.‘anSf?r function
been subtracted in each quadrant, corresponding to a center frequency thﬁfQ§s'SeCt'°ns at different tlmes. To account for this disparity, the total
independent of the ripple density, aniblit) after 2rQx 2, has been subtracted, Squared error of the STRF is set to the sum of the bootstrap STRF
corresponding to a delay that is independent of ripple velocity. At very small rippi@riance and the square of the crossover estor
densities (long ripple periodicity), center frequency is less meaningful, and simi-
larly for small ripple velocity and delay, respectively. At large ripple velocity the

slope asymptotes to the signal front delay, but when this occurs, the small . )
amplitude of the transfer function makes it difficult to measure the phase. S¥Bereo . (t, X) captures the systematic error from not having taken all

Quadrant 4| Quadrant 1 Quadrant 1
w>0 Q w

FIG. 7. A: the phase of the transfer function can be well described by a lin
fit containing 6 parameters over most of the relevant regions af+fieplane.B:

15

2 — 2 2
OSsTRF = UBnotstrap+ Tx

Dong and Atick (1995) and Papoulis (1962).

data at the same time and is given by

A [Tw,Q)IN Ty [T, QINT,, Spectro-temporal Response Field
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wy =8 Hz h‘ - 1000
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T
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3
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0
-24
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Q, =0.2 cycloct
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by
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£
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wy=8Hz S
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Fic. 8. Three examples of spectro-temporal transfer function sections, corresponding STRFs. For é&e@ magnitude of
the temporal left) and spectralrfiddle transfer functions. All other details are as in Fig. 6glit), STRFs.
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T (%) = [max(max(m(m&, Q9)),

Tg(mﬂx,ni)D) ] ples. Responses are typically phase-locked to the moving en-
[Ta(we, 09)] -

velope of the ripple over a range of ripple velocities and
densities. However, of a total of 172 recordings made, only 76
cases provided adequate quality and quantity of responses. The
Finally, we collapse the error over the entitte X) plane into two regsons for this low yield vary. For example, we have encoun-

X |STRAL, )| (16)

dimensionless termé and e tered responses from a few units that were either poorly phase-
1 1 locked or were inconsistent from trial to trial; such units were
8= ATAX f f dtdxosret, X)m 17) abandone_d since our analysis methods are unsunab_le fo'r their
characterization. Also because of extended recording times,
typically over an hour, units were sometimes lost before suf-
€= j f dtdq osrre, X)]Z/ f f dtd{ STRAL, YJ* (18 ficient data could be collected to carry out a full analysis. In

other cases, the unit or animal changed state during the record-
whereAT and AX are the length of time and number of octaves oveng session, rendering the data unreliable. The reason for the
which the STRF was measured. extended recording time is to present ripple sounds and other
& is a measure of the average standard deviation in units of t§gunds consisting of combinations of ripples, so we can verify
maximum of the STRFe is a measure of the variance in units ofjnearity by using the STRFs to predict the response of the cell
Eoiveg.olvaggllsae 'fandoc:g:a"%ot\t‘vee‘:_a';a/ (gﬁ%P‘s)iQnyﬂiNn%E el)r’a"t‘?g: to new sounds. We found empirically that about 10,000 spikes
should go dIOVEVﬂ with the numt;er of recordings, assuming the syst typlc_ally needed to c_)btaln an STRF. with _WeII-deflned
can be described as the time-invariant random process. eatures in response to single ripples, which with our sound
paradigm usually corresponds to a 20-min presentation per
cross-section. To eliminate data corresponding to unreliable
cells, as described in the preceding text, we use units only with
Data presented here were collected from 22 single-unit analues of§ = 0.12 ande = 0.7 (seeveTHoDS) as the threshold
54 multiunit recordings in 11 ferrets. In the summary histder rejecting the data. These reliability statistics takes into
grams, both single units and multiunit are included but asecount most of the preceding sources of error. The values of
distinguished from each other. 0.12 and 0.7 are somewhat arbitrary, though we found that
Most units encountered in Al respond well to moving ripeells tended to separate themselves into two populations above

RESULTS

A ET(w.qu)|N Ty |T(w (e QINT, Spectro-temporal Response Field
- - : — - 16— —
30} Q,=0.8cycloct{ 30} ;
600
0
wy=4Hz -600
-0.8 0 0.8
1000
10}
0
0 ﬂx={l).6 cyc.:‘oct o ) ) ) ) -1000
-6 -8 0 8 16 0.8 0 0.8
40 Q, = 0.4 cycloct
2000
0
-2000
0 wy =8 Hz .
o - B ]
64 48 -32-16 0 16 32 48 64 -16 -08 0 0.8 1.6 g 100
w (Hz) Q(cyc/oct) Time (ms)

FiIc. 9. Further examples of spectro-temporal transfer function sections, corresponding STRFs. Conventions asinvtl. 8.
narrow ripple velocity bandwidtiB: with broad ripple velocity bandwidthC: a spectrally asymmetric unit.
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and below these thresholds, respectively, and that the mathelnits also vary significantly in the asymmetry of their trans-
matical criteria of reliable versus noisy cell corresponded we#r functions with respect to the direction of the moving ripple.
with our intuitive perception based on visual inspection.  For example, responses to the two directions are relatively
equal (transfer functions are roughly symmetric) in Figs. 6 and
Responses to moving ripples 9A. By comparison, the temporal transfer functions in Fig. 8,
A-C, are asymmetric. The unit in Fig.B8responds better to
On average, Al units synchronize their responses to upwargward moving ripples; the unit in Fig.(G8responds over a
and downward moving ripples equally effectively with ripplevider range to downward moving ripples. These asymmetries
velocities ranging from 2 to over 100 Hz, and ripple densitiemre discussed in depth later in the context of transfer function
up to 4 cycle/octave. Examples of several temporal and spseparability.
tral transfer function magnitudes are shown in Figs. 810, eachThe STRFs derived from these transfer functions commonly
with its corresponding STRF. In all cases, units respond welkhibit alternating significant regions of positive peaks and
only over a specific range of ripple velocities and ripple demegative basins, interpreted here as excitatory and inhibitory
sities, but the detailed shape and extent of the transfer functiosagions, respectively. The four STRFs illustrated in Figs. 6 and
vary from one unit to another. For instance, the unit in Fiy. 98 are of units that are tuned between 1 and 2 kHz. However, the
responds well only to ripple velocities af4 Hz, whereas the shapes of the surrounding inhibitory regions vary considerably
unit in Fig. 9C responds well at least up t864 Hz. The unit reflecting the different temporal and spectral transfer functions
in Fig. 6 responds well to ripple densities within0.4 cycle/ (see Fig. 11). For instance, STRFs may be relatively symmetric
octave, whereas the unit in Fig. AGesponds over a wider (Fig. 84) or asymmetric (Fig. @). They can be clearly direc-
range of densities but poorly at O cycle/octave. tional, i.e., tilted one way (Fig.B) or the other (Fig. ) on the
As described in the preceding text, the transfer function spectro-temporal surface.
w = 0 is set to 0 since it is not well defined (and so has 0 STRFs display a wide variety of shapes that are briefly
contribution to the STRF). Additionally, for 12 cells (notdescribed in the following text. The majority of Al cells exhibit
shown), the transfer function was measured froBito +1 Hz STRFs with a simple excitatory field and varying amounts of
in 1-Hz steps, and in all cases, the transfer function wathibitory surround. The first peak of the excitatory portion
negligible at the slowest ripple velocities (in contrast to thiadicates theBFs e Of the unit, while its extent reflects its

average firing rates, which remained significant). tuning curve at a given level.
A |T(w,ﬂxq)w Ty |T(w,q,ﬂ)|/N’T,q Spectro-temporal Response Field
v . - — - 4 ) R
20t ﬁ 5 g 500
%‘ 3
R F 5
10 Eo,s
o——
24 -16 -8 0 8 16 24 -l
B
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4
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24 -16 8 0 8 16 24-l
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Fic. 10. Further examples of spectro-temporal transfer function sections, corresponding STRFs. Conventions asAn Fig. 8.
fast dynamicsB: slow dynamicsC: offset cell.
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inhibition above théBFgrre The ¢ distribution in our sample is
600 summarized in Fig. 12. It closely resembles that seen earlier with

downward moving and stationary ripples (Kowalski et al. 1996a;

Schreiner and Calhoun 1994; Versnel et al. 1995).
: STRFs also vary considerably in their temporal dynamics,
best seen in thé — x domain. Some are fast with envelopes
that decay relatively rapidly (Figs.®and 1®). Others are
slow, taking over 150 ms to decay (as in Figé& &d 1@).
These response dynamics reflect details of the temporal trans-
fer function such as the ripple velocity at which it peaks
(characteristic ripple velocity) and its width (ripple velocity

In many cases, the inhibitory surround is spectrally asymmethandwidth). STRFs also exhibit an onset delay (or latency) that

around theBFsre (Fig. 9C); such asymmetry is effectively is captured by they values, derived from the phase function
captured by the parametér(Eq. 19, where¢ values near zero (Eq. 13. The distribution of this delay tends to be well clus-
indicate roughly symmetric STRFs, while~ 90° indicate strong tered around 25 ms as seen in FigB1Finally, unit STRFs

B 165 ectro-temporal Response Field
b~

i

1000

0251 N
. 1 150 200 250
Time (ms}

Fic. 11. Two cells with unusual receptive fields.

inhibition below theBFstrs and ¢ ~ —90° indicates strong can be generally classified as eitbaset(Figs. 9,A—C,and 10,
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that some outliers are not included in the figure;
however, all data points are used in statistics.
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o 2. 3

Population statistics
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FIc. 13. Small and a larges, cell, with the distribution ofxg, 5 in the middle There is no obvious separation of cells into
2 populations, fully separable and inseparable, but rather a continuum.

A and B, most cells) oroffset (Fig. 10C), a property that aberration or noise except that they are derived from repeatable
corresponds, respectively, to the negative or positive sign responses§ = 0.10 ande = 0.49 for Fig. 1A andé = 0.03
the parametep. Onset STRFs are far more common in ouande = 0.04 for Fig. 1B).
sample as seen in thedistribution in Fig. 1Z.
Finally, STRFs may display very complex dynamics andeparapility and its relation to STRF shape

spectro-temporal selectivity that are not easily captured by
simple parameters. Two examples of such STRFs are shown irseparability is an important property of the transfer func-
Fig. 11. One might be tempted to dismiss such STRFs as m&oms that has significant experimental and theoretical implica-

Population statistics Example STRFs 05 Contributions to ctgyp
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FiG. 14. The distribution of 3 inseparability indicators,, a,, ande,. Middle: examples of STRFs with extreme values of the
corresponding inseparability indicatdright distributions of each inseparability indicator, plotted against total inseparability,
agyp- Because there is always some level of noise, no cell hag, an «, exactly equal to 0.
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tions. In this paper, we assume quadrant separability and ask 0.5
whether responses are fully separable, the degree of insepara- .
bility, and the origin of the inseparability. Each of these indi- 04l R
cators has a potentially useful interpretation for the shape of the ’ <
STRF and the underlying structure of processes that give rise osw | ° .
to it. 03t : "
The simplest and most general way to examine full separa- | )y ;-..
bility is to compute the SVD matrixes\p (EQ. 6. Figure 13 . ® e e
illustrates the distribution ofs,p, Eq. 7, computed from all 021 AP
the cells used. Values near 0 indicate that only the first singular : I 2F I
value has a large nonzero value and hence that the STRF is o1l St ..
fully separable. Increasing values indicate increasing degree of ) o
inseparability. A significant fraction of cells deviate from full I p=.90]
separability. %701 02 03 04 05

It can be shown that fully separable transfer functions must
have magnitudes that are symmetric about thie(#) origin,
Alone, ag,p offers no insight into the specific nature of thes&c. 16. The correlation between the meanagfa,, anday and asyp.
departures from the symmetric, separable case. However, it ) ) )
will be shown that there are three paramet&igs 8—10that mean ofay, a, and|agl. Figure 16illustrates that this measure
in combination formasyp and that each corresponds to 4 highly correlated toas,p and hence is an equally valid
specific distortion of a separable transfer function: measure of inseparability. , o _

1) ag, the response directionality, or the imbalance in the There is no sharp threshold for inseparability. In. Fig. 13, for
overall strength of the responses to the upward and downwédtance.asyp ~ 0.35 clearly corresponds to an inseparable
moving ripples: cell. However, _because of the continuum of valuesdgyp,

2) a,, the asymmetry in the temporal transfer functiegw); there is no obvious cutoff.

3) ag, the asymmetry in the special transfer functi®).

The distribution of these three parameters is shown in Figl SCUSSION
14. The directionality parametek is distribp_ted approxi Summary of results
mately normally between negative and positive values. This
parameter is closely related to the directional selectivity of the The emphasis of this work has been on presenting a tech-
STRF. STRFs with largky| values exhibit obvious directional nique to describe neural response patterns of units in the
shapes such as seen in Fig. 1dp( middlg. A significant cortex. More precisely, we use moving ripples to characterize
proportion of units (37%) also have spectral dissimilarity vathe spectral and temporal properties of responses of auditory
ues @) exceeding 0.3. An STRF with especially larggis cortical neurons, although this is a general method that can be
shown in Fig. 14 rfhiddle. Note that these STRFs may notused for any population of neurons for which responses are
necessarily exhibit obvious directionally selective shapes. shown to be substantially linear for broadband stimuli.

A strikingly different finding is the dearth of units (12%) We have examined the nature of Al responses to rippled
with significant temporal dissimilarityo( > 0.3) as seen in the spectra moving in both upward and downward directions and
distribution in Fig. 14 pottom, leff. An STRF witha = 0.30 incorporated these responses into the STRF. A summary of the
is displayed in Fig. 14Kottom, middl¥ it is difficult to detect main results follows.
simple correlates of the large, values in the shape of the 1) We confirm earlier findings (Kowalski et al. 1996a) that
STRF. Note that this is not due to measuring the tempor&l units respond in a phase-locked fashion to the moving
transfer function at six points and the spectral transfer functioipples over a range of velocities and directions that depend on
at eight points in each quadrant: when the last two points of ttiee ripple density of the spectrum. In particular, responses are
spectral cross section are removed, the same results are uswally tuned around a specific ripple velocity and density. In
tained. the ferret, responses are commonly best in the 4- to 16-Hz

The three inseparability indicators do not appear to be siggnge and densities lower than 2 cycle/octave. These findings
nificantly correlated, based on the pairwise scatter plots in Faye roughly consistent with those found in different species
15, suggesting that independent mechanisms underlie the @sing different experimental paradigms: experiments with dy-
pression of each factor. By contrast, each factor (as expectadjnic spectra (e.g., narrowband such as AM and FM tones or
is well correlated with the total SVD index as seen in Fig. 1droadband such as modulated noise and click trains) have
(right). found similar maximum rates of synchronized responses in Al

We can define a composite measure of inseparability, ttleggermont 1994; Schreiner and Urbas 1988).

2) We demonstrate a similarity between responses to upward

mean(0t;, 00, |0l])

1 1 1

o P08\ p=2l| il p=27 and downward moving ripples. Specifically, the response pa-

.. _— te. rameter values and distributions to either direction are compa-

0] 0.5 ..-_‘.’,',';-_ ) 055 me” = rable (even if unequal), and hence reflect general dynamic
3:3,' . ‘.}'; s g‘" . response properties, not direction specific properties per se.

0% 05 1 % s 1 % 05 1 3) Complete spectro-temporal transfer functions are mea-

o a % sured that exhibit a rich variety of shapes and cover a wide

Fic. 15.  The correlation of 3 inseparability indicatots, a., and o, range of stimulus parameters. The STRF describes the way Al
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units integrate stimulus power along the spectro-temporal diat a unit is differentially responsive to one direction of ripple
mensions. movement and hence must have a significant nonzero direc-
4) We illustrate a variety of STRFs with a broad range dfonality index. Therefore direction selectivity necessarily im-
BFs, bandwidths, asymmetrical inhibition, temporal dynamicplies an inseparable STRF. The opposite is not true: an insep-
and direction selectivity. We have assessed the prevalenceaafble STRF might reflect other factors such as asymmetric
these features over all sampled units by examining the disteémporal and/or spectral transfer functiong 6r «g # 0),
bution of specific parameters that reflect each of these featumehich do not manifest themselves in an obvious elongated
5) The degree and origin of inseparability of the unit transféorm or preferential responses to one direction or another (as
functions is assessed using two methods. In the first, S\&hown in Fig. 14 center column, middland botton).
analysis is applied to the entire transfer function to determineSeparability also places strong constraints on the underlying
the number and ratio of the resulting singular values. Thmological processes that give rise to the STRF shapes. For
results indicate that Al units span a relatively uniform distriexample, full separability suggests that the STRF is constituted
bution between full separability to moderate inseparability. lof independent temporal and spectral processing stages. By
the second method, we examine the origin of inseparability andntrast, inseparability (or just quadrant separability) implies
find that it is primarily due to two factors: imbalance in thespectrally and temporally intertwined stages of processing with
response power and an asymmetry in the spectral trandfeg specific form of the model being entirely dependent on the
function relative to the direction of ripple motion. Interestinglydetails of the transfer functions. Quadrant separability in par-
we find that temporal (but not spectral) transfer functions atieular is a very strong constraint on both the neural inputs and
relatively symmetric and hence contribute little to overathe processing of the unit: almost all neural networks (whether
transfer function inseparability. linear or nonlinear) with multiple fully separable STRFs as
In Kowalski et al. (1996a,b), pentobarbital was used fanputs will in general produce a totally inseparable STRF. In
anesthesia; in the present study, a ketamine/xylazine combiparticular, the naive procedure of constructing a directionally
tion was used. In Kohn et al. (1996), the effect of differergensitive STRF by talking the simple sum of two fully sepa-
anesthetics on the tuning properties of auditory cortical cells @ble STRFs with differing,,, and 74 will produce a totally
a whole was presented. Under ketamine, a wider variety iobeparable STRF which is not quadrant separable. To produce
responses was found, tuning to ripple density was slighttyquadrant separable STRF requires special inputs and/or spe-
lower (from 1.05 cycle/octave under pentobarbital to 0.8 cyclefal processing.
octave under ketamine), and no significant change in temporalt can be shown that a quadrant separable, temporally symmet-
tuning was observed. Other properties, though, such as lined-(i.e., o, << 1), cortical neuron can be easily constructed by
ity of the STRF for downward moving ripples, were uniaking inputs from (potentially) many units with (potentially)
changed. These results can be accounted for by assuming tliférent spectral response fields and even with (potentially) dif-
overall, response fields measured with ripples have less infarent temporal impulse response properties as long as the tem-

bition under ketamine than under pentobarbital. poral dynamics of the inputs to the cortical cell are fast compared
with the temporal dynamics of the cortical cell itself (Simon et al.
Separability and its implications 2000). Quadrant separability then occurs when the inputs are

temporally phase-lagged relative to each other [though not nec-

An important property of the responses is that for ripplesssarily 90° as in Saul and Humphrey (1990) and Dong and Atick
moving in only one direction, the spectral and temporal fun¢t995)].
tions are separable: within each quadrant they can be measurethis is consistent with the input neural connectivity one
independently of each other. The property of quadrant sepagapects from layer IV cortical neurons, which receive input
bility makes it possible to measure the overall spectro-tempofedm thalamic medial geniculate body (MGB). MBG neurons
transfer function in reasonable times using only single ripplesay have fully separable STRF [as is the case for typical
since only a few velocity and spectral density combinationsferior colliculus central (ICC) neurons (Escabi and Schreiner
need to be measured. We have established (Kowalski et 2899)] with different spectral response fields (differing in
19964a) that all recorded transfer functions in Al exhibit quadvidth, extent/location of inhibitory bands, and to a lesser
rant separability. In the experiments reported here, we assunegtent, best frequency). MGB temporal cross-sections of trans-
guadrant separability (Kowalski et al. 1996a,b) and proceedfed functions are essential constant when low-passed at a cutoff
to examine whether the resulting two-dimensional transféequency appropriate to cortical behavior (e.g., typically well
functions are fully separable. Our findings indicate that Adelow 100 Hz) (Yeshurun et al. 1985). Furthermore some
responses fall uniformly on a continuum between moderatdl§GB neurons may have a temporal phase lag, as in the visual
to fully separable. system’s lateral geniculate’s “lagged cells” (Saul and Hum-

A fully separable cell cannot be directionally selective in itphrey 1990).
responses. Inseparability is a necessary condition for the forSignificantly, the property of quadrant separability with tem-
mation of more complex STRFs; direction selectivity is onporal symmetry does not allow for any cortical inputs unless
possible consequence of inseparability. A directionally selettrose inputs have the same temporal behavior as the neuron
tive STRF usually has a distinctive elongated form along studied. If, for instance, all neurons in the same cortical column
spectro-temporal direction that matches that of its most sensave similar temporal properties, including similar neural de-
tive ripple stimulus. For example, the STRF illustrated in Fidays, this would be consistent with quadrant separability. Oth-
8B is most responsive to a ripp{é = —0.4 cycle/octavew = erwise, cortical inputs would break quadrant separability and
—8 Hz, whose spectrogram matches well the outline of tloeeate a totally inseparable neuron. Total inseparability would
STRF spacing and orientation. Direction selectively implidse expected for cortical neurons in layers that receive signifi-
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