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Cortical responses time-locked to
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high-gamma band depend on
selective attention

Vrishab Commuri1, Joshua P. Kulasingham2 and

Jonathan Z. Simon1,3,4*

1Department of Electrical and Computer Engineering, University of Maryland, College Park, MD,

United States, 2Department of Electrical Engineering, Linköping University, Linköping, Sweden,
3Department of Biology, University of Maryland, College Park, MD, United States, 4Institute for Systems
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Auditory cortical responses to speech obtained by magnetoencephalography

(MEG) show robust speech tracking to the speaker’s fundamental frequency in

the high-gamma band (70–200 Hz), but little is currently known about whether

such responses depend on the focus of selective attention. In this study 22

human subjects listened to concurrent, fixed-rate, speech from male and female

speakers, and were asked to selectively attend to one speaker at a time, while

their neural responses were recorded with MEG. The male speaker’s pitch range

coincided with the lower range of the high-gamma band, whereas the female

speaker’s higher pitch range had much less overlap, and only at the upper end

of the high-gamma band. Neural responses were analyzed using the temporal

response function (TRF) framework. As expected, the responses demonstrate

robust speech tracking of the fundamental frequency in the high-gamma band,

but only to the male’s speech, with a peak latency of ∼40 ms. Critically, the

response magnitude depends on selective attention: the response to the male

speech is significantly greater when male speech is attended than when it is not

attended, under acoustically identical conditions. This is a clear demonstration that

even very early cortical auditory responses are influenced by top-down, cognitive,

neural processing mechanisms.

KEYWORDS

cortical FFR, cocktail party, speech tracking, primary auditory cortex, phase-locked

response

1 Introduction

Time-locked auditory responses are one mechanism by which the auditory system

preserves temporal information about sounds. For example, subcortical responses to voiced

sections of speech time-lock to the speaker’s fundamental frequency (F0), whether &100

Hz for a typical male voice (Skoe and Kraus, 2010) or &200 Hz for a typical female voice

(Lehmann and Schönwiesner, 2014), and have been measured via the frequency following

response (FFR; Kraus et al., 2017). As neural responses propagate up the auditory pathway,

characteristic time-locking frequencies are generally observed to decrease. For example,

cortical responses time-lock to the envelope of the speech most strongly below ∼10 Hz

(Ahissar et al., 2001; Luo and Poeppel, 2007). Nevertheless, recent FFR studies have observed

cortical time-locked responses at rates often associated with subcortical processing, &100
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Hz, using responses measured from magnetoencephalography

(MEG; Coffey et al., 2016; Gorina-Careta et al., 2021), and

electroencephalography (EEG; Bidelman, 2018). However, even

the highest frequencies associated with cortical phase locking

are substantially lower than those seen from subcortical sources

(typically with EEG).

The FFR obtained from the average of many (e.g., thousands

of) responses to a repeated auditory stimulus has been used to

provide insight into the representation of speech in the auditory

periphery and the fidelity of sound encoding in the brain (Basu

et al., 2010; Kraus et al., 2017). Modulations of the FFR strength

and consistency can be used to study cognitive processes such

as learning (Skoe et al., 2013), selective attention (Lehmann and

Schönwiesner, 2014; Holmes et al., 2017), level of attention (Price

and Bidelman, 2021), intermodal (auditory vs. visual) attention

(Hartmann and Weisz, 2019), and the effect of familiar vs.

unfamiliar background language (Presacco et al., 2016; Zan et al.,

2019). These studies demonstrate that FFRs can be affected by

top-down auditory processes, though it is not clear how much

of the FFR modulation is due to subcortical vs. cortical sources

(Gnanateja et al., 2021; Gorina-Careta et al., 2021).

The FFR, in order to be averaged over so many trials,

uses many repetitions of a short stimulus (e.g., a single speech

syllable). In contrast, temporal response functions (TRFs), used

here, characterize neuronal responses to speech using single long-

duration trials of continuous speech (Lalor et al., 2009; Ding and

Simon, 2012). While TRF analysis is most often applied to low

frequency cortical responses (Brodbeck and Simon, 2020), TRFs

obtained with MEG have recently also been used to investigate

cortical responses to speech in the high-gamma range (70–200 Hz;

Kulasingham et al., 2020; Schüller et al., 2023a), i.e., for frequencies

similar to those investigated using cortical FFR, showing a single

response peak with latency∼40 ms, indicating a focal neural origin

in primary auditory cortex [see also Kegler et al. (2022) for EEG].

The present study extends the work of Kulasingham et al. (2020) by

applying high-gamma TRF analysis of MEG responses to subjects

listening to speech frommale and female speakers in single-speaker

and “cocktail-party” (competing speaker) paradigms.

The present study also uses single-speaker conditions to allow

comparison of subjects’ responses to both male (F0 & 100 Hz) and

female speech (F0 & 200 Hz) in isolation. Prior work has posited

that high-gamma cortical responses may reflect the processing of

F0 and related features in a speech stimulus (Guo et al., 2021).

Additionally, Kulasingham et al. (2020) found that high-gamma

cortical responses were driven mainly by the segments of speech

with F0 below 100 Hz and that responses to F0 above 100 Hz were

not easily detected. This suggests that responses to speech from a

typical female speaker (average F0 ≫100 Hz) may be reduced in

comparison to responses to a male speaker (average F0 ∼100 Hz).

Moreover, many recent studies on high-gamma cortical responses

to speech only use stimuli frommale speakers in their experimental

design (Kulasingham et al., 2020; Canneyt et al., 2021a; Gnanateja

et al., 2021; Guo et al., 2021; Kegler et al., 2022; Schüller et al.,

2023b). This may be because typical male speakers have a lower F0

than typical female speakers, and stronger responses are evoked by

speech with a lower F0. Indeed, Canneyt et al. (2021b) investigated

responses to stimuli from both male and female speakers and

observed that high-gamma cortical response strength was inversely

related to F0.

The competing speakers conditions used here allow the

investigation of how these fast cortical responses change depending

on top-down influences such as task specificity and selective

attention. The use of both a male and female speaker removes

much of the ambiguity as to the source of the responses due to

the considerable gap between the speakers’ fundamental frequency

bands with the aim of enhancing responses to the male speech

stream which can be assessed for attentional effects. In humans it

is seen widely that auditory low frequency (.10 Hz) time-locked

cortical responses depend on selective attention, whether for simple

sounds (Hillyard et al., 1973; Elhilali et al., 2009; Holmes et al.,

2017) or speech (Lalor et al., 2009; Ding and Simon, 2012). To

what extent selective attention changes response properties in early

latency primary auditory cortex, as opposed to secondary auditory

areas and beyond, is not yet well understood. Using invasive

intracranial EEG (iEEG) recordings, effects of selective attention

have been observed for simple stimuli (Bidet-Caulet et al., 2007)

but not for competing speakers (O’Sullivan et al., 2019). FromMEG

studies there is recent evidence for selective attention affecting the

low frequency response properties of very early auditory cortex

during a competing speaker task (Brodbeck et al., 2020), but the

effect is small and occurs only under limited conditions.

Thus, the main focus of the present study concerns two primary

research questions. Firstly, what differences are there in high-

gamma cortical responses between the cases of male (F0 & 100

Hz) vs. female (F0 & 200 Hz) speech? Secondly, do early (∼40

ms latency) high-gamma cortical responses to speech, putatively

arising only from primary auditory cortex (Simon et al., 2022),

depend on selective attention? Both these questions are addressed

by analyzing MEG recordings of subjects listening to single male

and female voices, and to the same voices presented simultaneously

but with the task of selectively attending to only one or the other.

2 Materials and methods

2.1 Data

The data set analyzed here was previously obtained and

analyzed in an earlier study that investigated differing cortical

responses between spoken language and arithmetic using two

different speakers (Kulasingham et al., 2021). The data are available

at: https://doi.org/10.13016/xd2i-vyke and the code is available at:

https://github.com/vrishabcommuri/mathlang-highgamma.

2.2 Participants

The data set comprises MEG responses recorded from 22

individuals (average age 22.6 years, 10 female, 21 right handed) who

were native English speakers. Individuals underwent a screening

in which they self-reported any known hearing issues, and a brief

MEG pre-experiment recording to verify that auditory cortical

responses to 1 kHz tone pips were present and normal. No

subjects were excluded on either ground. The participants provided
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written informed consent and received monetary compensation.

The experimental procedure was approved by the Internal Review

Board of the University of Maryland, College Park.

2.3 Data acquisition and preprocessing

The data were collected from subjects using a 157 axial

gradiometer whole head KIT (Kanazawa Institute of Technology)

MEG system with subjects resting in the supine position in a

magnetically shielded room (Vacuumschmelze GmbH & Co. KG,

Hanau, Germany). The data were recorded at a sampling rate of

1 kHz with an online 200 Hz low pass filter with a wide transition

band above 200Hz and a 60Hz notch filter. Data were preprocessed

in MATLAB by first automatically excluding saturating channels

and then applying time-shift principal component analysis

(TSPCA; de Cheveigné and Simon, 2007) to remove external noise,

and sensor noise suppression (SNS; de Cheveigné and Simon, 2008)

to suppress channel artifacts. Two of the sensor channels were

excluded during the preprocessing stage.

The denoised MEG data were filtered from 70 to 200 Hz

using an FIR bandpass filter with 5 Hz transition bands and were

subsequently downsampled to 500 Hz. Independent component

analysis (ICA) was then applied to remove artifacts such as

heartbeats, head movements, and eye blinks.

The subsequent analyses were performed in Python using the

mne-python (1.3.1; Gramfort et al., 2013) and eelbrain (0.38.4;

Brodbeck et al., 2019) libraries, and in R using the lme4 (1.1–21;

Bates et al., 2015) and buildmer (2.8; Voeten, 2023) packages.

2.4 Neural source localization

Prior to the data collection, the head shape of each subject

was digitized using a Polhemus 3SPACE FASTRAK system, and

subject head position in the MEG scanner was measured before

and after the experiment using five marker coils. The marker coil

locations and the digitized head shape were used to co-register the

template FreeSurfer “fsaverage” brain (Fischl, 2012) using rotation,

translation, and uniform scaling.

Source localization was performed using the mne-python

software package. First, a volume source space was composed

from a grid of 7-mm sized voxels. Then, an inverse operator was

computed, mapping the sensor space to the source space using

minimum norm estimation (MNE; Hämäläinen and Ilmoniemi,

1994) and dynamic statistical parametric mapping (dSPM; Dale

et al., 2000) with a depth weighting parameter of 0.8 and a noise

covariance matrix estimated from empty room data. The result

of the localization procedure was a single 3-dimensional current

dipole centered within each voxel.

The Freesurfer “aparc+aseg” parcellation was used to define

a cortical region of interest (ROI). The ROI consisted of voxels

in the gray and white matter of the brain that were closest to

the temporal lobe—Freesurfer “aparc” parcellations with labels

“transversetemporal,” “superiortemporal,” “inferiortemporal,” and

“bankssts.” All analyses were constrained to this ROI to conserve

computational resources.

2.5 Stimuli

Subjects listened to isochronous (fixed-rate) speech from

two synthesized voices—one male and one female. Speech was

generated using the ReadSpeaker synthesizer with the “James” and

“Kate” voices (https://www.readspeaker.com). Two kinds of speech

stimuli were created: “language” stimuli that consisted of four-word

sentences, and “arithmetic” stimuli that consisted of five-word

equations. The word rate of the arithmetic stimuli was faster than

that of the sentence stimuli so that neural responses to each could be

separated in the frequency domain and so that each stimulus was 18

s in duration. The stimulus files are available in the same repository

as the data: https://doi.org/10.13016/xd2i-vyke.

2.6 Experimental design

The experiment was divided into two conditions. In the first

condition (“single-speaker”), subjects listened to speech from either

the male or the female speaker; and in the second condition

(“cocktail-party”), subjects listened to both speakers concurrently

and were instructed to attend to only one. Each condition was

conducted in blocks: four single speaker blocks (2 × 2: male and

female, sentences and equations) followed by eight cocktail party

blocks. At the start of each cocktail party block, the subject was

instructed as to which stimulus to attend to, and was asked to press

a button at the end of each trial to indicate whether a deviant was

detected. The subjects were generally able to attend to the instructed

speaker (Kulasingham et al., 2020). The order in which blocks were

presented was counterbalanced across subjects.

2.7 Stimulus representations

In accordance with the methods of Kulasingham et al. (2020),

two predictors (i.e., stimulus representations) were used, one

capturing the high-frequency envelope modulations and another

capturing the stimulus carrier (also called temporal fine structure;

TFS). The broad rationale for using these two predictors is to allow

comparisons with the analogous varieties of FFR: FFRENV and

FFRTFS (Coffey et al., 2019). Figure 1 illustrates the procedure for

extracting both predictors from a stimulus waveform.

2.7.1 Carrier predictor
The carrier predictor is a representation of the speech signal

components within the high-gamma band. In particular, the

fundamental frequency of voiced speech is directly encoded by this

representation. The inclusion of this stimulus representation as a

predictor in our model enables us to examine how much of the

neural response is a consequence of cortical entrainment to the

high-gamma frequencies of the stimulus waveform itself.

To create the carrier predictor, each stimulus was first

resampled to a frequency of 500 Hz to reduce the ensuing

computation required. Prior to downsampling, an anti-aliasing FIR

prefilter with 200 Hz cutoff and 5 Hz transition band was applied

to the data. This resampled signal was then bandpass filtered in
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FIGURE 1

Illustration of how the carrier and envelope modulations predictors are extracted from an auditory stimulus. The raw stimulus waveform is shown in

the bottom-left corner. Envelope modulations predictor: to generate the envelope modulations predictor, starting with the raw waveform and

following the arrows up and to the right, first an auditory spectrogram is generated using a model of the auditory periphery (Yang et al., 1992). Then,

the acoustic envelope in each frequency bin in the range 300–4,000 Hz is bandpassed in the high-gamma range (70–200 Hz), and the average is

then computed across the channels. The result is a single time-series signal. Carrier predictor: to generate the carrier predictor, following the arrows

to the right, the raw stimulus waveform is simply bandpass filtered to the high-gamma range. The result is a second single time-series signal. [Figure

reproduced with permission from Kulasingham et al. (2020)].

the high-gamma range of 70–200 Hz using an FIR filter with

5 Hz transition band. Finally, the signal was standardized (i.e.,

mean subtracted and normalized by the standard deviation) to

produce the carrier predictor. Standardized carrier predictors for

each stimulus in the condition were concatenated to form one

long-form carrier predictor per condition.

2.7.2 Envelope modulations predictor
In contrast to the carrier predictor, which extracts high-

gamma band components directly from the stimulus, the

envelope modulations representation captures high-gamma band

modulations of higher frequency bands present in the stimulus.

Higher frequency bands capture harmonic content that cannot

be derived from the fundamental frequency alone, but which,

for voiced sections of speech, is modulated at the rate of the

fundamental frequency of the voicing due to the inherent non-

linearities of the auditory system. We include the envelope

modulations predictor in our model to assess cortical entrainment

to the high-gamma band envelope modulations of these higher

frequency signals.

To create the envelope modulations predictor, the speech

was transformed into an auditory spectrogram representation at

millisecond time resolution using amodel of the auditory periphery

(Yang et al., 1992) (http://nsl.isr.umd.edu/downloads.html). The

model uses a bank of 128 overlapping Q10dB ≈ 3 bandpass filters

uniformly distributed along a logarithmic frequency axis over 5.3

oct (24 filters/octave); other details of the model, including the

hair-cell stage and lateral inhibition with half-wave rectification are

described in Chi et al. (2005).

The auditory spectrogram produced by the model is a two-

dimensional matrix representation of the acoustic envelope over

time for different frequency bins. The spectrogram frequency bins

in the range 300–4,000 Hz were selected, resulting in a time-series

for each frequency bin: the time course of the acoustic power in

the signal in that band. The range 300–4,000 Hz was chosen in

order to effect a clear separation between the lowest frequency in

the predictor the upper end of the high-gamma range (200 Hz)

and because the stimulus was presented through air tubes which

attenuate frequencies above 4,000 Hz (Kulasingham et al., 2021).

Each time-series was filtered to the high-gamma range in the same

method as the carrier predictor, using an FIR filter with a 70–200

Hz passband. The time-series signals were then averaged across

frequency bins, and the resulting signal standardized, to produce

a single time-series—the envelope modulations predictor.

2.8 TRF estimation

The simplest model of a single temporal response function

(TRF) is given by

y(t) =
∑

τ

x(t − τ )h(τ )+ n(t) (1)

where x(t − τ ) is the time-shifted predictor signal (e.g., high-

frequency envelope modulations or carrier) at time lag τ ; h(τ ) is

the TRF at time lag τ ; y(t) is the MEG measured response signal;

and n(t) is the residual noise (i.e., everything not captured by

convolving the predictor and TRF).
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From Equation (1), we see that the TRF h is simply the impulse

response of the neural system with predictor input x and withMEG

measured response output y. The TRF can be interpreted as the

average time-locked neural response to continuous stimuli (Lalor

and Foxe, 2010).

2.8.1 Single-speaker model
In the present study, amore complexmodel with two predictors

was used for the single-speaker condition

y(t) =
∑

τ

(xc(t − τ )hc(τ )+ xe(t − τ )he(τ ))+ n(t) (2)

where xc and xe are, respectively, the carrier and envelope

modulations predictors derived from the single-speaker stimulus,

and hc and he are the corresponding TRFs.

2.8.2 Cocktail-party model
A TRF model with four predictors—the carrier and envelope

modulations for the attended speaker and the carrier and envelope

modulations for the unattended speaker—was used for the cocktail-

party conditions.

y(t) =
∑

τ

∑

s={attend,ignore}

(xc,s(t−τ )hc,s(τ )+xe,s(t−τ )he,s(τ ))+n(t)

(3)

where predictors and TRFs are similar to the single-speaker

model in 2, with the additional subscript s indicating the attended

and unattended speaker. TRFs corresponding to the male and

female speakers were analyzed separately, but TRFs corresponding

to “attend language” and “attend arithmetic” were pooled together

within each speaker.

2.8.3 Estimation procedure
The parameters for each TRFmodel were estimated jointly such

that the ordering of the predictors did not affect the estimates,

enabling predictors to compete to explain the variance in the data.

Predictors that contributed more to the neural response had larger

TRFs. TRFs were estimated for time lags from−40 to 210 ms using

boosting with cross-validation via the “boosting” routine from the

eelbrain library (Brodbeck et al., 2019). Overlapping bases of 4 ms

Hamming windows with 1 ms spacing were employed to promote

smoothly varying responses.

Since the source space MEG responses are three-dimensional

current vectors, the estimated TRFs also comprise vectors that span

three spatial dimensions. The L2 norm (amplitude) of each vector

in the TRF was taken at each time instance, resulting in a one-

dimensional time-series for each TRF—one TRF per source space

voxel—thereby simplifying the interpretation and visualization of

the results.

2.9 F0 analysis

To investigate the extent to which the MEG responses in

our study were affected by speaker F0, a simple comparison was

conducted whereby the time-averaged F0 of each speaker was

extracted using Praat (Boersma and Weenink, 2023) and then

compared to the amplitude of the TRFs.

2.10 Statistical tests

To determine whether peaks in the estimated TRFs were

induced by time-locked neural responses to the predictors and

not simply obtained by chance, a null model was created by

circularly time-shifting the predictors and recomputing TRFs using

the shifted predictors. This procedure enables us to disentangle

responses to the typical temporal structure of the predictor from

responses that time-lock to the predictor. Three shifted versions

of each predictor were produced by shifting in increments of one-

fourth of the total duration of the original predictor, resulting

in three null-model TRFs for each original TRF. Cluster-based

permutation tests (Nichols and Holmes, 2001) with Threshold Free

Cluster Enhancement (TFCE; Smith and Nichols, 2009) were used

to test for significance across the TRF peak regions over the average

of the three null models and to account for multiple comparisons.

Significance for all tests was set at the 0.05 level.

To test that the TRFs were better than chance at predicting

the MEG responses, we compared the prediction accuracy of the

TRF model to the average prediction accuracy of the three null

models. Since all predictors were fit jointly, this results in one

prediction accuracy per voxel per model. Because each subject was

mapped individually to the “fsaverage” brain, individual variation

was mitigated by smoothing the voxel prediction accuracies over

the source space using a Gaussian window with 5 mm standard

deviation. Cluster-based permutation tests with TFCE were used

to test for significance across the cortical region of interest.

TRFs were computed for each source voxel as a time-varying,

three-dimensional current dipole that varies over time lags. For

each TRF vector, its amplitude was compared to the average of three

null models across subjects at each time lag. Time lags for which the

truemodel amplitude was significantly greater than the average null

model were determined using a one-tailed test with paired sample

t-values and TFCE.

To assess differences in TRF peak amplitude across conditions

(single-speaker and cocktail-party) two linear mixed effects models

were used. Prior to fitting, the average of the three null models

was subtracted from each TRF; this had the effect of subtracting

off the noise floor of each TRF, thereby facilitating a more

direct comparison of peak amplitudes. From the result, the peak

amplitudes in the range 20–50 ms were extracted. For each

condition, two models were developed: one maximal model that

attempts to account for as many fixed (population-level) and

random (subject-level) effects as possible in the data, and a

reduced model that was obtained by pruning effects from the

maximal model that failed to significantly explain variance in the

data. Maximal models are the largest possible models that will

still converge and were obtained using the R package buildmer.
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Reduced models were then obtained for each condition using

buildmer’s backward elimination protocol.

The linear mixed effects models were fit to the TRF peak

amplitudes and incorporated the following categorical inputs:

predictor type (either carrier or envelope modulations) and speaker

gender (either male or female) in the single-speaker model;

and predictor type (either carrier or envelope modulations) and

attention focus (either attend or ignore male speaker) in the

cocktail-party model. The target maximal model for buildmer was

in both cases obtained by setting all crossed terms as fixed and

random effects:

SSmaximal : peak amplitude ∼ predictor type× speaker gender

+(predictor type × speaker gender| subject)

CPmaximal : peak amplitude ∼ predictor type× attention focus

+(predictor type × attention focus| subject)

3 Results

3.1 F0 analysis

The average F0 for each speaker was computed for voiced

regions of speech over all trials:

• Male speaker: average F0 of 95 Hz (std. dev. 8 Hz)

• Female speaker: average F0 of 168 Hz (std. dev. 10 Hz)

Kulasingham et al. (2020) found that neural responses are

diminished for F0 above 100 Hz. Because the male speaker’s average

F0 is below 100 Hz, and the female speaker’s average is well above

100 Hz, we anticipate stronger high-gamma cortical responses for

the male speaker than the female speaker.

3.2 TRF response estimation

To validate the extent to which the estimated TRFs can predict

the neural responses from the predictor signals, a prediction

accuracy is computed for each TRF. The prediction accuracy is the

correlation coefficient between the normalized predicted and true

neural responses for each TRF. Since a TRF was estimated for each

voxel in the source space, this assesses which cortical regions were

best predicted by the TRF model.

Prediction accuracies were computed for the single-speaker

and cocktail-party models (single-speaker: mean = 0.0149, std =

0.0065; cocktail-party: mean = 0.0132, std = 0.0061). The prediction

accuracies for the average of the three null models (single-speaker

null: mean = 0.0123, std = 0.0057; cocktail-party null: mean =

0.0115, std = 0.0059) were compared to the original models by

means of a one-tailed test with paired sample t-values and TFCE

for each of the two conditions. A large portion of the voxels showed

a significant increase in prediction accuracy over the null model

(single-speaker: tmax = 7.372, p < 0.001, cocktail-party: tmax =

5.055, p < 0.001; see Figure 2).

No significant voxels were identified in TRFs for the female

single speaker (single-speaker: tmax = 3.436, p = 0.055).

3.3 Single-speaker TRFs

Figure 3 shows the various TRFs, averaged across voxels and

subjects, and latency ranges for which the TRFs were significantly

greater than the noise floor. In total, four TRFs were computed for

the single-speaker scenario: carrier and envelope TRFs for male and

female speakers.

The envelope TRFs for the male speaker exhibited a significant

response over the null models driven by an effect from 13 to 43 ms

(tmax = 4.643, p < 0.001). Similarly, the significant response of the

carrier TRFs to the male speaker was driven by an effect from 19 to

37 ms (tmax = 3.393, p < 0.001). These results corroborate those

obtained in Kulasingham et al. (2020). No significant responses

were found for the TRFs for the female speaker.

We used a linear mixed effects model to test the differences

between the male and female speaker TRFs. The model was fit to

the maximum TRF amplitude for each subject in the range 20–50

ms. The model that best captured the variability in the data (as

determined by backward elimination from a maximal model; see

Section 2.10) was given by:

peak amplitude ∼ speaker gender

i.e., a single fixed effect of speaker gender and no random

effects. The effect of speaker gender was significant (F = 18.28,

p < 0.01), indicating that speaker gender was the only meaningful

predictor of peak height. Additionally, since the reduced model did

not contain any effects of predictor type, we conclude that there is

no substantive difference between the envelope modulations and

carrier predictors in the single-speaker condition—both contribute

significantly to predicting the neural response.

3.4 Cocktail-party TRFs

In the single-speaker case, we reported significant differences in

the TRFs of subjects listening to male and female speakers, which

differ strongly in their acoustics. In contrast, the cocktail party

conditions do not strongly differ in their acoustics but rather only

in the subjects’ task and state of selective attention; additionally,

TRFs are simultaneously obtained for the male speech and female

speech for the same stimulus. We repeated the TRF estimation

procedure from the single-speaker analysis, with the result being

four average TRFs for the cocktail-party scenario: carrier and

envelope TRFs for male attended and unattended speech. TRFs for

female speech were estimated but not analyzed further due to lack

of a significant response. The grand average TRFs are presented

in Figure 4.

As in the single-speaker scenario, we compared TRF amplitudes

to those of the average null model to determine the significance

of the TRF peaks. Statistical tests revealed that the envelope TRFs

for the attend male speaker condition exhibited a significant peak

over the null models driven by an effect lasting from 15 to 59 ms

(tmax = 4.230, p < 0.001). Similarly, the significant regions of the

carrier TRFs to the attend male speaker condition were driven by

an effect lasting from 31 to 35 ms (tmax = 2.755, p = 0.04). In the

case of the unattended male speaker condition, only the envelope

TRF was significant over the null model, driven by an effect lasting
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FIGURE 2

Prediction accuracies for male single-speaker (Top) and cocktail-party (Bottom) models. Red regions denote voxels where the TRF model produced

a prediction accuracy that was significantly greater than that of the noise within the ROI. TRFs to female speech (not shown) did not produce

significant responses in any voxels.

FIGURE 3

Comparison of male speech and female speech TRFs for the single speaker conditions. Solid black lines indicate the TRF grand average (over TRF

amplitude, averaged across voxels in the ROI); shaded regions indicate values within one standard error of the mean. Red shading indicates TRF

values significantly above the noise floor. The distribution of TRF vectors in the brain at the time with the maximum significant response is plotted as

an inset for each TRF. (Top left) Average TRF of the envelope modulations predictor derived from the male speaker stimulus. Note the large

significant response at ∼30–50 ms in the TRF which indicates a consistent, time-locked neural response to the speech envelope modulations at a

30–50 ms latency. (Top right) Average TRF of the envelope modulations predictor derived from the female speaker stimulus. Notice the lack of a

significant response in the average TRF or a region of significance over the null model. Similar results were observed for the carrier stimuli: (Bottom

left) Average TRF of the carrier predictor derived from the male speaker stimulus. Note the significant response in the TRF at the same latency

observed for the corresponding envelope TRF. (Bottom right) Average TRF of the carrier predictor derived from the female speaker stimulus. As in

the case of the corresponding envelope TRF, there is no significant response observed for this TRF.
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FIGURE 4

Comparison of attended and unattended TRFs for the male speech stimuli, in the cocktail-party setting. Solid black lines indicate the TRF grand

average (over TRF amplitude, averaged across voxels in the ROI); shaded regions indicate values within one standard error of the mean. Red shading

indicates TRF values significantly above the noise floor. The distribution of TRF vectors in the brain at the time with the maximum significant response

is plotted as an inset for each TRF. (Top left) Male speech envelope TRF for subjects attending to the male speech (female speech is background). A

large significant response in the TRF is observed between ∼30–50 ms which indicates a consistent, time-locked neural response to the speech

envelope modulations at a 30–50 ms latency. (Top right) Male speech envelope TRF for subjects attending to the female speech (male speech is

background). (Bottom left) Male speech carrier TRF for subjects attending to the male speech (female speech is background). (Bottom right) Male

speech carrier TRF for subjects attending to the female speech (male speech is background). Linear mixed e�ects model and post-hoc test results

indicate that the attended speech TRF peak amplitude is significantly greater than the unattended speech TRF peak amplitude.

from 23 to 31 ms (tmax = 3.651, p < 0.01). A statistical summary

for each model is presented in Table 1.

Next, the effect of selective attention on TRF peak amplitude

was analyzed. A linear mixed effects model was fit to the maximum

TRF amplitude for each subject in the range 20–50 ms. The model

that best captured the variability in the data (as determined by

backward elimination from a maximal model; see Section 2.10) was

given by:

peak amplitude ∼ predictor type× attention focus

+(predictor type | subject)

The model indicates that the fixed effects and interaction

of predictor type and the focus of attention (attend male or

attend female) significantly contribute to its prediction of the TRF

peak amplitudes, even when controlling for variation in predictor

response strength at the subject level. A statistical summary for

each model is presented in Tables 2, 3. The presence of a significant

interaction (t = −2.499, p = 0.012) between predictor type and

attention focus suggests that TRF response strength is modulated

by attention to different degrees between the envelope modulations

and carrier predictors.

A post-hoc Wilcoxon signed-rank test was conducted to test

attentional modulation of peak TRF amplitudes between attended

and unattended conditions. Two tests were conducted: one for the

envelope TRFs and one for the carrier TRFs. The results showed

a significant difference for the envelope TRFs (W = 29.0, p <

0.001) and no significant difference for the carrier (W = 122.0,

p = 0.899). Figure 5 shows individual subjects’ maximum TRF

amplitudes in the attend and ignore conditions (male speaker only).

4 Discussion

In this study, we investigated time-locked high-gamma cortical

responses to continuous speech measured usingMEG in a cocktail-

party paradigm consisting of concurrent male and female speech.

Such responses were found, and their volume-source localized

TRFs provided evidence that these responses are modulated by the

focus of attention.

4.1 E�ect of F0 on high-gamma cortical
responses

Most prior studies on high-gamma cortical responses to speech,

whether FFR or continuous speech TRFs, employ male speech

(e.g., Hertrich et al., 2012; Kulasingham et al., 2020; Canneyt

et al., 2021a; Gnanateja et al., 2021; Guo et al., 2021; Kegler

et al., 2022; Schüller et al., 2023b). Male speakers typically have

lower F0 (&100 Hz) than typical female speakers with a higher

F0 (&200 Hz). Kulasingham et al. (2020) observed that even

for speech stimuli restricted to a single male speaker, the lower

pitch segments of voiced speech contributed more to the cortical

response than segments with higher pitch. Furthermore, Canneyt

et al. (2021b) compared responses to male and female speech,

observing that cortical response strength was inversely related to F0

and rate of F0 change throughout continuous speech. Schüller et al.

(2023a) recently presented a study wherein gamma-band responses

to competing male speakers, with low and high fundamental

frequencies respectively, were recorded using MEG. As expected,
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TABLE 1 Statistical summary for single-speaker and cocktail-party models.

Speaker gender Predictor Significant lags Statistics

Single-speaker Male Envelope 13–43 ms tmax = 4.643, p < 0.001

Carrier 19–37 ms tmax = 3.393, p < 0.001

Female Envelope N.S. tmax = 3.790, p = 0.062

Carrier N.S. tmax = 2.935, p = 0.188

Attended speaker

Cocktail-party Attend male (ignore female) Male envelope 15–59 ms tmax = 4.230, p < 0.001

Male carrier 31–35 ms tmax = 2.755, p = 0.04

Female envelope N.S. tmax = 3.236, p = 0.074

Female carrier N.S tmax = 2.466, p = 0.476

Attend female (ignore male) Male envelope 23–41 ms tmax = 3.651, p < 0.01

Male carrier N.S. tmax = 2.758, p = 0.097

Female envelope N.S. tmax = 2.979, p = 0.433

Female carrier N.S. tmax = 2.421, p = 0.949

Bold values indicate significant (i.e., less than 0.05) p-values.

TABLE 2 Linear mixed e�ects model summary, single-speaker model.

Fixed
e�ects

Estimate Std. err. t-value p-value

Intercept 4.702× 10−4 4.245× 10−5 11.075 <0.001

Speaker

gender

−2.567× 10−4 6.004× 10−5 −4.276 <0.001

Bold values indicate significant (i.e., less than 0.05) p-values.

TABLE 3 Linear mixed e�ects model summary, cocktail-party model.

Fixed
e�ects

Estimate Std. err. t-value p-value

Intercept 2.159× 10−4 4.518× 10−5 4.780 <0.001

Predictor type 1.440× 10−4 4.815× 10−5 2.990 <0.01

Attended speaker 2.079× 10−5 3.678× 10−5 0.565 0.57

Predictor

type:Attended

speaker

−1.300× 10−4 5.202× 10−5 −2.499 <0.05

Random
e�ects

Variance Std. dev.

Intercept—

subject

3.003× 10−8 1.733× 10−4

Predictor

type—subject

2.125× 10−8 1.458× 10−4

Bold values indicate significant (i.e., less than 0.05) p-values.

they reported a significant dropoff in neural response strength to

the speaker with the higher F0, a large enough effect that in some

cases the responses could not be distinguished from the noise.

In the present study, we have replicated the findings of these

previous works by demonstrating a significant difference in the

strength of high-gamma cortical responses to male and female

speech. As expected, our results show no significant response

to female speech, whether in the concurrent speech paradigm

or in isolation. In contrast, our findings show a strong, time-

locked response to male speech, whether presented in isolation or

concurrently with female speech, at a latency of 30–50 ms. This

latency is consistent with a neural origin localized to the primary

auditory cortex, and when combined with the relative insensitivity

of MEG to subcortical sources, bolsters the idea that high-gamma

time-locked MEG responses can act as a unique window into

primary auditory cortex, without interference from subcortical or

other cortical areas (Simon et al., 2022).

Although no significant responses to female speech were

observed in our study, this does not imply that such responses

are not present. Recent studies have shown that response strength

greatly improves for stimuli with strong higher harmonic content.

For instance, Guo et al. (2021) recorded strong cortical responses

in subjects listening to speech-like harmonic stimuli with a missing

fundamental. Canneyt et al. (2021b) also observed that stimuli with

strong harmonic content evoke stronger cortical responses.

4.2 The e�ect of selective attention on
high-gamma cortical responses to
continuous speech

In this work, we assessed the effects of selective attention on

time-locked high gamma cortical responses to continuous speech.

When subjects were instructed to attend to the male speaker,

their time-locked responses to the speech envelope modulations

and carrier were significantly larger than when subjects ignored

the male speaker. As anticipated, no significant time-locked high-

gamma responses were seen for the female speaker, either as a single

speaker or concurrently with the male speaker. In this way, the use

of a female speaker removes any ambiguity as to the source of the

neural responses by enforcing a large gap between the competing

speakers’ F0 bands. This resulted in enhanced responses to the male
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FIGURE 5

Cocktail-party male speech TRF peak amplitude comparison across subjects. Male speech TRF peak amplitudes in the latency range 20–50 ms are

presented for attend male (red) and ignore male (gray) conditions. Dashed lines show each individual subject’s change in peak height between attend

and ignore conditions. Solid lines show the change in the mean between the conditions. For the envelope TRFs, note the significant decrease in the

mean value, and for most subjects, between the conditions. No such trend is observed in the carrier TRFs. ***p < 0.001.

speech stream which were then assessed for strength modulation

depending on the focus of selective attention.

The MEG-measured TRFs estimated in our study indicate a

cortical origin of the responses with a ∼40 ms peak latency, in line

with the findings from earlier studies on time-locked high-gamma

auditory cortical responses (Hertrich et al., 2012; Kulasingham

et al., 2020) and support the idea that these responses are due to

time-locked responses to the fast (∼100 Hz) oscillations prevalent

in vowels produced in the continuous speech of a typical male

speaker and localized to the primary auditory cortex.

Effects of selective attention on high-gamma EEG FFR have

also been observed previously, for non-speech sounds (concurrent

amplitude modulated tones) by Holmes et al. (2017), and for

simple speech sounds (concurrent vowels) but only when already

segregated at the periphery (presented dichotically; Lehmann and

Schönwiesner, 2014). The FFR frequencies for which these selective

attention effects were observed (∼100, and 170 Hz, respectively)

are consistent with a neural source of primary auditory cortex, but

the FFR paradigm does not lend itself to latency analysis. Recently,

using TRF analysis of EEG responses to continuous speech, Kegler

et al. (2022) demonstrated that a high-gamma TRF (with a latency

profile consistent with a contributing source of primary auditory

cortex), was modulated by the presence or absence of word-

boundaries, i.e., a higher order cognitive (linguistic) cue. Schüller

et al. (2023a) also used a TRF approach on MEG data to show that,

for male competing speakers, neural responses are modulated by

selective attention.

4.3 Caveats and summary

While the speech stimuli were complete sentences and

equations, they were not naturalistic continuous speech:

the text was spoken at a fixed rate, the sentences were

unrelated to each other, and the syntactic/mathematical

form of the stimuli was strongly stereotypical. The results

seen here would be strengthened by similar findings using

continuous speech.

In summary, we have shown that time-locked high-

gamma cortical responses to speech are modulated by

selective attention in a cocktail-party setting. We have

previously argued that time-locked high-gamma MEG

cortical responses to speech constitute a valuable physiological

window into human primary auditory cortex, with minimal

interference from subcortical auditory areas, due to MEG’s

relative insensitivity to subcortical structures, and minimal

interference from higher order cortical areas, due to the

high-frequency/low-latency of the responses. In this way we

provide new evidence for (top-down) selective attentional
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processing of competing speakers as early as primary

auditory cortex.
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