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Background

The notion of a machine imitating human intelligence was first addressed as early
as 1950 by English mathematician and logician Alan Turing. Acknowledged
as the father of modern computing, Turing recognized that computers might
eventually be able to imitate human thought in very convincing ways. Therefore,
he suggested what is now known as the Turing test, where a human converses
with a computer without seeing it. If the human is convinced by the computer’s
answers that it is human, then the machine passes the test and is deemed to
have some level of human-like intelligence. The idea of a reverse Turing test,
where a computer attempts to differentiate between a human and a computer,
arose during the late 1990s when computer programs began to imitate humans
in order to misuse the resources of internet-based systems. Tests developed to
differentiate these programs from real humans took the form of what would
come to be known as CAPTCHAs.

The term CAPTCHA, which stands for Completely Automated Turing Test
to Tell Computers and Humans Apart, was coined in 2000 by a group of profes-
sors at Carnegie Mellon University. These professors – Luis von Ahn, Manuel
Blum, Nicholas Hopper and John Langford – were working on research for Ya-
hoo developing the first of these programs when they first used the term. Later,
Luis von Ahn and Manuel Blum would be credited with the invention of the
first CAPTCHAs – ones that were soon adopted by Yahoo and later Google and
Hotmail.

In a general sense, CAPTCHAs are used to prevent automated software
(“bots”) from abusing the resources of various systems. They arose from a need
to reduce or eliminate mass spam on websites and in webmail, to prevent bots
posing as humans from entering chat rooms, to eliminate voting fraud on online
polls, and most importantly to protect sensitive data that could be accessed
by a simulated user. A bot might use an email provider to create multiple fake
email accounts in order to send spam. Similarly, it could use a social networking
site to spam or otherwise annoy the other users. Or it might simply create fake
accounts in order to use up system resources. CAPTCHAs can be used to
prevent this misuse of resources by requiring that users prove they are human
before using a system.
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The first CAPTCHAs were visual, requiring users to enter a series of letters
or numbers based on a given distorted image. The image was meant to create
a barrier for simulated users because a program would presumably not be able
to interpret the image in order to enter the correct string of characters. Visual
CAPTCHAs, however, are an accessibility barrier to users who are visually
impaired or have cognitive disabilities such as dyslexia. Auditory CAPTCHAs
attempt to provide accessibility where visual ones cannot.

Since auditory CAPTCHAs are necessary for every website which must pro-
vide access to all users, it is important that they be at least as secure as their
visual counterparts. A hacker wishing to gain access to a website will use the
easiest means possible – so if an auditory CAPTCHA is easier to crack than
the visual one, the website is as vulnerable as if the visual one did not exist.
Besides this necessity for auditory CAPTCHAs to get up to par, they also have
the potential to become much more difficult to break than visual ones (Balaji).

It is important to understand the advantages as well as the vulnerabilities of
auditory CAPTCHAs. For example, a bot might crack an auditory CAPTCHA
by filtering out the excess noise from the sound clip in order to identify the
numbers present. But a computer identifies speech by examining the frequency
of that speech at different points in time. It may be stumped, then, if a human
voice is mixed with background noise that which shares similar frequencies; it
can’t tell which bits of frequency belong to the voice and which belong to the
background noise. A human user may be able to understand the voice in that
same situation, because the human brain has specialized ways to segment sound.

For instance, the “cocktail party” effect is a well-known example of the
human mind;s surprising ability to separate sound from one source among many
(“Cocktail Party Effect”). The analogy is that someone at a noisy party can
understand what their friend is saying to them, and if spoken to from across
the room, can respond to that as well. A computer would likely be unable to
accomplish this since it would be confused by so many voices of similar frequency
and volume. This is the idea behind auditory CAPTCHAs – to utilize the human
brains ability to segregate sounds of similar frequencies from one another.

In our research, we looked at some of the techniques currently used in some
of the most advanced CAPTCHAs. We attempted to duplicate some of these
techniques and test how well they stand up to an automatic speech-recognizing
program (ASR). We also formulated some of our own distortion methods to
observe how well they fared against the ASR.

Hypotheses

The auditory CAPTCHAs used by the companies of Google1 and Facebook2 to
protect their websites represent some of the most advanced distortion techniques
used today. In listening to these auditory CAPTCHAS and ones from other
popular websites, we observed a variety of techniques used to distort the spoken

1https://www.google.com/accounts/NewAccount
2http://www.facebook.com/r.php (click Try an Audio CAPTCHA)
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numbers. For example, many of the numbers sounded as if a reverberation effect
had been added- that is, the speaker sounded as if they were in an empty room.
Other spoken digits sounded like a tempo or pitch change had been used. Both
Google and Facebook intermixed both male and female voices in one CAPTCHA
file, and added background noises derived from human speech. For instance,
Facebook’s CAPTCHA background noise was simply reversed human speech.
Many CAPTCHAs also featured false leads - spikes of sound which were as loud
as one of the spoken digits, but to the human ear were clearly reversed numbers
or gibberish. Our work focused on the distortion to the numbers themselves but
not the false numbers intended to fool an automatic speech recognizer.

Figure 1: An example Facebook CAPTCHA in its entirety.

We set out to test our own versions of some of these observed distortion
techniques, to determine which were most effective at making spoken digits
unrecognizable by an ASR while still recognizable to a human. We decided
to test a variety of background sounds derived from human speech, as well as
other methods such as cutting out part of the speech signal of the digit. The
specific techniques are discussed later in this paper. We expected each of our
distortions to decrease the recognition rate of a speech recognition program
when that program was trained on normal speech, although we did not know by
how much. It was also our hope that combinations of these techniques would
decrease the ASR’s recognition rate to lower than those found with Facebook
or Googles CAPTCHAs.

Setup and Methods

We used the speech recognizer HTK (Hidden Markov Model Toolkit)3 to test the
power of our various distortion techniques. This speech recognizer, developed by
the Cambridge University Engineering Department, is a freeware program that
can be trained on a number of sound files to recognize the difference between
different words, or, in our case, digits. It can then be tested on new sound
files, outputting which of these test words were identified correctly. In this
experiment, it uses a six-step Markov modeling technique in order to create

3http://htk.eng.cam.ac.uk/
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guesses and provide recognition statistics for the input files. In order to use this
speech recognizer, we needed to obtain a large database of spoken digits to train
and test on.

To reflect the wide range of voices used to create advanced CAPTCHAs,
we chose as our training corpus a collection of spoken digits obtained from a
Rutgers Universitys online database. There were approximately 2000 separate
files in this database – almost 200 recordings of each digit zero through nine,
spoken by different individuals. The people recorded were men and women, with
normal, Southern and Midwestern accents, speaking at a variety of speeds and
intonations. As a result, the digits were understandable but sometimes included
accents such as dropping the “’r” of “four”. Our hope was that by training on
a wide variety of speaking styles, our speech recognizer would likewise be able
to identify the different speaking styles featured in the online CAPTCHAs.

Because it is necessary for the HTK speech recognition program to train
and test on files that have the same sampling frequency, we used MATLAB to
re-sample all of our testing and training files to 8kHz. The sound files from
the online CAPTCHAs were downloaded with an 8kHz sampling frequency so
even though some of our other files were originally recorded at 16kHz, these
were re-sampled to the lower frequency. We chose to re-sample everything to
the lower frequency because in going from a lower to a higher sampling rate,
the missing information would be interpolated; on the other hand, going from
a higher to a lower sampling rate produces the same result as if the sound had
originally been recorded at the lower rate.

The Rutgers database sound files were recorded so that each file featured a
digit padded with silence at the beginning and the end. However, we realized
that by training HTK on these files, we were falsely including the silence as part
of the digit itself, causing recognition rates to drop when testing on other files
that had different amounts of silence padding. In order to get the most accurate
results it was therefore necessary to trim the silence from our database files. To
accomplish this, MATLAB was used to automatically remove the silence from
the sound files. This approach was imperfect, however, and many of the files
had to be trimmed by hand by looking at a time-waveform plot in Audacity
and visually identifying where the speech stopped or leveled off. Fig.2 shows an
example of a file before trimming.

Since HTK trains by recognizing differences between two different digits, we
also did not want the loudness of the digits to be a possible difference on which
HTK would mistakenly train. For this reason the sound files used for training
and testing needed to be normalized. The sounds were linearly scaled such
that the maximum amplitude of the sound file was set to .9, and the average
value of all the samples was subtracted from each sample, so that the amplitude
would fluctuate around (the new average of) zero. By normalizing each sound
in this way, we ensured that HTKs training was not affected by variations in
the loudness or average of the speech samples.

In order to define a human intelligibility level we also had to test all of our
distorted files by listening to them individually. To accurately test our ability
to recognize the numbers after distortion, we created a script to play randomly
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Figure 2: A typical digit before trimming.

chosen files from the distorted testing database. We then entered what number
we thought we heard, and the output indicated whether or not our guess was
correct. Based off this information we were able to identify intelligibility limits
– when we started guessing incorrectly we knew the distortions were too strong.
A batch of distorted digits was judged to be “intelligible: if we got no more
than approximately 3% incorrect. However, this was an approximation – and
some of the shorter numbers such as six were much more prone to becoming
unintelligible than others.

This method for determining the point of “”intelligibility”” for these CAPTCHAs
could be improved by testing with more, unbiased subjects. In this project we
relied on only two test subjects (ourselves) to listen to the manipulated digits
and determine their intelligibility. But it is possible that an average user who
had not been working with the sound files as much would not be able to under-
stand the distorted digits as well. In the future, more test subjects should be
used to get an accurate measure of intelligibility, especially ones who have not
had previous exposure to the numbers database or the distortion techniques. It
would also increase precision to record the exact percentage of correct answers
for each subject.

Distortion Techniques

As mentioned above, our distortion techniques consisted mainly of adding back-
ground sound derived from human voices and other sources, or manipulating the
sound file itself. Some of the first ways we attempted to manipulate the sound
files included changing the tempo and/or pitch. Speeding up or slowing down
the file would increase or decrease the pitch, respectively, whereas changing the
tempo would affect the duration of the number but not the pitch. It was found,
however, that these changes did not change HTK’s recognition significantly from
the original, undistorted files, so the technique was not pursued further.

Another technique was to adjust a file by cutting out various parts of its
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signal. Kochanski et. al. suggest that cutting out 60 ms of speech every 100 ms
of a file should decrease an ASRs recognition rate to nearly zero percent, while
not affecting human recognition. We tested this claim by cutting out the speech
from digits in that ratio, and also by breaking up the digit into 8ms intervals
and randomly removing half of the intervals. Besides removing parts of the
signal in this way, we also attempted a similar technique where we replaced the
deleted portions with white noise. We hoped that the human ear would be able
to filter out this background noise and ignore it, but that the random signal
would confuse HTK.

Figure 3: The number two, before and after the “cutout” technique is applied.

At first, these techniques seemed to degrade HTKs recognition significantly.
However, when identifying a file, HTK uses windows of a specified duration
(typically 25 ms) to look at small intervals of the file, and it was found that
as long as the window size was somewhat greater than the size of the removed
portions, recognition did not decrease dramatically. Even with as large an
interval as 60ms cut out, we were able to increase the window size such that
the recognition rate did not degrade very much. Because HTK attempts to fill
in the space where the signal is cut out (guessing what should be there), larger
rather than smaller cutout intervals would have made HTK’s recognition worse.
Intervals larger than 60ms, however, would have degraded human recognition
too much.

Another form of distortion that we attempted was to create an echo effect.
An echo is created by taking a sample from a particular point in the sound
file of a digit, then adding it back into the file a set number of samples later.
This is done for every sample over the entire file. A double echo is created by
performing this same process, but with two different intervals for samples, and
a triple echo with three intervals, etc. We expected this distortion technique
to achieve low recognition from HTK, since the numbers in the Facebook and
Google CAPTCHAs sounded reverberated similar to echo. The results were
poor, however – HTK had high recognition rates, within about 90%, for most
all of the echo files we tested.

We also tried a similar reverberation technique where we applied two dif-
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ferent pre-made MATLAB scripts4 designed to add either normal or “natural”
sounding reverberation. However, as with echo, after several trials it was found
that these reverberation techniques did not have a significant impact on HTKs
recognition rate so they ere not pursued further.

Figure 4: A digit before and after reverberation is applied.

As discussed earlier, the human brain has the ability to easily distinguish
human speech from a cacophony of other voices, whereas this task is often more
difficult for a computer. For this reason, we also decided to use background
noises which themselves featured human speech, in attempt to mask each digit.
Especially when the background noise shares a similar frequency range to the
spoken digit, it can be harder for HTK to differentiate the two. Whereas the
Facebook and Google CAPTCHAs use the reversed speech of one or two people
speaking English, we decided to test backgrounds featuring more voices and
speech of different languages. For each background noise, we downloaded the
clips, analyzed them in Audacity5 to pick out the most promising-sounding
segments, and superimposed them on the clean speech files. Each segment
was individually normalized and then the entire digit with distortion was again
normalized.

Most of our background testing files were found from the audio file database
Soundsnap6, a “platform to find and share free sound effects and loops” (www.soundsnap.com).
From this collection of original sounds we downloaded many recordings of “ran-
dom” noises. One of these background files types we tested was “cheer”, which
consisted of recordings of people cheering at sporting events. This background
type featured a wide range of frequencies, especially in the upper register, pro-
duced by the many people cheering. Another background type was “chatter”,
which sounds like a lot people talking in a crowded place like a restaurant. This
background type has enough speech that no one individual can be understood,
and featured most voices lower in pitch than those in the ”cheer” files. We
hypothesized that the broad spectrum of frequencies found in the cheer and
chatter backgrounds would help prevent hackers from simply using a low pass

4http://www-ece.eng.uab.edu/DCallaha/courses/DSP/Projects%202001/T4/sound.htm
5http://audacity.sourceforge.net/
6http://www.soundsnap.com/
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or high pass filter to extract the number.

Figure 5: A digit before and after ““cheer”” is added.

Another type of background noise was created by combining ten random
numbers from our speech database. The resulting sound was not recognizable
as any single number, but was rather a confusing mix – we called this technique
“babble”. Since this background noise was created using speech samples from
the same pool used to create the testing files, this background was like cheer
and chatter in that it featured many voices, but the frequency range was more
similar to that of the digits themselves. We also tried the process of reversing the
spoken digits before combining them, in an attempt to prevent any recognition
of the numbers used to make the background noise.

We also used this “babble” background in another way. We realized that, for
human recognition, hearing the end of a number is not as important as hearing
the first part of the number. This is because the digits zero through nine all
begin with different sounds, and humans can recognize a digit before it is even
finished. Knowing that we could take advantage of this ability, the babble noise
was added to the last 75% of the digits in an attempt to mask the end of the
digit but leave the beginning with cleaner speech.

Figure 6: A number file before and after end-babble is applied.

Hypothesizing that background of another language would be less distract-
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ing to a human user than an English background, we decided to add foreign
speech to our digit files. We used the AT&T Text-to-Speech converter7 to con-
vert several paragraphs of French text into sound files and later added them on
top of the digits. We used this computer-generated speech because there was
a variation in speakers; we were able to choose between three voices, male and
female, rather than just one persons recordings. This additional variation is
important when working with HTK because it reduces the ability of the com-
puter to recognize speech patterns. The French distortion was similar to babble
in intelligibility levels for humans, but we hoped that the spikes in loudness at
random times would confuse HTK.

Because Facebook’s CAPTCHAs achieved significantly lower recognition
rates than Googles, our goal was to create a distortion which could achieve
even lower rates than Facebooks. We tried combining variations of the many
distortions listed above in order to do this. We found at least one combination
of background noises that achieved this goal – mixing cheer, chatter, and end-
babble techniques. The figure below displays the spectrogram of a number file
before and after this combination technique is applied.

Figure 7: Our most effective distortion technique.

Results

The graph below (Fig.8) shows the trends of individual distortions as higher
percentages of each distortion are applied to our testing database. As the “cor-
ruption percentage” increases, the graph shows which techniques better degrade
HTKs ability to recognize the testing database. The second-to-last data point
for all of the trend lines, corresponding to 100% corruption, shows the point
which we deemed to be just-intelligible, based on our intelligibility testing. This
means that the techniques with a lower recognition rate at this second-to-last
point were overall more effective at masking the identity of the digits to the
ASR while still maintaining human intelligibility.

7http://www.research.att.com/ ttsweb/tts/demo.php
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Figure 8: HTK recognition rates of our various distortion methods. The x-
axis corresponds to an increasing corruption of the normal digits, where 100%
corruption (the second-to-last data point) means that the digits are just still
intelligible. Lower HTK recognition rates at this point indicate a more effective
distortion.

The table below (Fig. 9) shows the recognition rates of plain speech, our suc-
cessful distortion techniques, and digits from Google and Facebook CAPTCHAs.
The second column lists recognition rates of the various distortions after HTK
had been trained on the 2,000 clean files from the Rutgers database. The third
column shows the recognition rates after HTK was trained on digits distorted
using the same technique as those tested on. These percentages are important
because a technique which is varied enough to withstand being trained on exam-
ples of itself is more resilient to attack than one which can be easily cracked by
discovering or mimicking the distortion. Distortions with a higher percentage
in the third column are more susceptible to this kind of attack than those with
lower percentages.

This table shows that our most successful technique was a combination of
cheer, chatter, and end-babble background noise. When trained on the Rut-
gers database of undistorted digits, this combination achieved a lower recog-
nition rate (23%) than did the digits from Google (42%) or Facebook (27%)
CAPTCHAs.

10



Figure 9: HTK Recognition of our Distortion Techniques and CAPTCHAs.
The second column shows the recognition percentages when HTK was trained
on clean speech. The third column shows the recognition percentages when
HTK was trained on digits distorted in an identical way as the testing files.

Conclusions

Our work was limited in several ways which could be improved on in the fu-
ture. Even though our training database contained a variety of speech styles,
pitches, and intonation, an even more extensive database would likely improve
a speech recognizer’s accuracy. The ASR could also be trained to recognize the
silence before and after the spoken digits. This was something which proved too
time-consuming for us, but training the recognizer to automatically distinguish
between silence and the number would allow it to recognize digits which had not
been hand-trimmed. Similarly, the recognizer could be trained to distinguish
between a given background noise and the number.

Our work could probably be most improved by using more human testers
to determine the intelligibility of different distortions. Although our judgment
of intelligibility seemed to be about the same as that of others, more people
should be used and their opinions averaged. There is certainly room for some
bias on our parts, as we listened to these digits many times and became more
familiar with them than the average person. Using more people, unfamiliar with
the distortion techniques and digit database, should help get a more objective
assessment of intelligibility.

We discovered that many of our results were very promising several com-
binations of distortions were able to achieve lower recognition rates than did
Facebooks CAPTCHAs. One of these combinations, Cheer1 (40%) + chatter9
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(30%) + end babble (14%), had only a 23% recognition rate by HTK (Fig.9).
Variations of this combination such as increased babble and decreased cheer
also achieved similar recognition rates. The variations most challenging to the
human ear, though still intelligible, went as low as 20.5%.

When HTK tested on digits affected with solely white noise distortion it got
only a 28% recognition rate. This may indicate that, at a level at which hu-
man intelligibility is unaffected, natural environment distortions (i. e. human-
produced sounds) have a greater effect on confusing ASRs than do other noise
distortions such as white noise.

Our ”end-babble” technique was also surprisingly successful. Although on
its own this technique did not degrade recognition as much as the CAPTCHAs
did, end-babble was essential to create the low recognition rates obtained with
our combination techniques.

Our testing not only showed how well these techniques fared against HTK
when trained on clean speech, but how well they performed when HTK was
trained on a database distorted in the same way. These figures are important
because they indicate how difficult it would be for a hacker to crack a web-
site’s CAPTCHA by simply training using other examples the same website.
Facebook’s recognition rate when trained on itself was only 62.5%, whereas
for Google the rate jumped to 98.0%. This shows that Google CAPTCHAs
may be vulnerable to attackers which use samples derived from Google itself
to train their ASRs. Our cheer + chatter + babble combos consistently got
around 80.0% recognition rates when trained on themselves,though other distor-
tions were somewhere in between – cheer, for example, got 73.0% against itself.
None of our distortions achieved as low a recognition rate against themselves
as did Facebook, showing that these techniques are weaker than Facebook’s
CAPTCHAs in this respect. However, using different techniques for different
digits in the same CAPTCHA might alleviate this vulnerability.

The 4% discrepancy between the recognition rates of our combination dis-
tortions and those of Facebook CAPTCHAs is not great enough to show that our
technique is necessarily superior to those currently used in advanced CAPTCHAs.
However, the similarly low recognition rates suggest that our technique can also
be used successfully. Perhaps in combination with existing methods, our tech-
niques of background noise to mask the digits could be used to increase the
security of auditory CAPTCHAs.
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