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Abstract—Speaker-specific attention decoding from neural
recordings to suppress the acoustic background and extract a
target speaker in an in-the-wild multi-speaker conversation sce-
nario poses a cornerstone challenge for advanced hearing devices.
Despite several recent advances in auditory attention decoding,
most existing approaches fail to reach the real-time performance
and attention decoding accuracy required by hearing aid devices.
In this work, we aim to quantify fundamental limits on the
performance of auditory attention decoding by establishing and
computing the trade-off between accuracy and decision window
length. We demonstrate the utility of our theoretical bounds in
benchmarking the performance of existing widely-used attention
decoding algorithms using both simulated and experimentally-
recorded magnetoencephalography data.

Index Terms—Auditory attention decoding, information theory,
channel capacity, error bounds, MEG

I. INTRODUCTION

Auditory Attention Decoding (AAD) from neural recordings
has become an active area of research in computational neuro-
science due to the emerging smart hearing aid technology [1].
The goal of AAD is to decode the attentional state of a listener
to a target speech stream in a multi-speaker environment,
and thereby use it as a feedback to the hearing aid device
to enhance the attended speech [2], [3]. In research settings,
magnetoencephalography (MEG) and electroencephalography
(EEG) are among the frequently used non-invasive techniques
to record brain activity in auditory experiments, which are then
analyzed to decode selective attention [2], [4]–[14].

A practical hearing aid system that utilizes a brain-computer
interface (BCI) could potentially decode the listener’s atten-
tional state in an environment with multiple talkers and use
microphone arrays to enhance the audio from the desired
source [15], [16]. To ensure optimal user experience, near
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real-time operation and high decoding accuracy are critical
factors: incorrect switching between audio sources can confuse
the user. Meanwhile, a system that fails to respond promptly
to the user’s desired attentional focus will not be effective in
achieving its intended purpose.

Establishing the capabilities and limitations of AAD algo-
rithms is important in practice, especially for manufacturers
of hearing devices. However, benchmarking the performance
of AAD methods theoretically can be challenging because it
requires an in-depth understanding of the underlying neural
mechanism. Furthermore, the performance of an AAD may
depend on various factors such as the complexity of the
acoustic environment, the decision window length, and signal-
to-noise ratio (SNR).

In this work, we provide an information-theoretic frame-
work, based on a commonly used forward model used in
auditory neuroscience, and establish an algorithm-agnostic
lower bound on the AAD error in a two-speaker environment.
We model the auditory brain as a communication channel, in
which the input is the binary-valued focus of attention and the
output is the observed neural response. We then use techniques
from information theory to compute the channel capacity and
apply Fano’s inequality [17]–[19] to obtain a lower bound on
the AAD error.

We present simulation studies as well as application to MEG
data from an auditory experiment in a double-speaker set-
ting. Our simulation studies confirm the proposed theoretical
bounds by revealing a fundamental trade-off between decision
window length and decoding accuracy/channel capacity [20].
We finally validate the theoretical error bound by comparing
it with the performance achieved by two commonly-used
decoders, namely, the Bayes’ and correlation-based decoders,
using both simulations and application to MEG data.

The outline of this paper is as follows. In Section II
we present our information-theoretic formulation of AAD,
characterize the capacity and lower error bound, and outline
the parameter estimation procedures. In Section III we provide
simulation studies as well as analysis of experimentally-
recorded MEG data to validate our theoretical framework,
followed by our concluding remarks in Section IV.
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Fig. 1. Schematic depiction of the auditory attention decoding problem. Top: existing approaches use the neural response to decode the attentional state, from
which the error rate can be quantified. Bottom: our contribution is to model the AAD problem as a noisy communication channel and use information-theoretic
techniques to establish fundamental performance limits such as channel capacity and lower error bound.

II. PROBLEM FORMULATION

We consider a common encoding model of the selective
auditory attention, based on the Temporal Response Function
(TRF) [21]. In this encoding model, the neural response
observed by MEG is a linear convolution of a kernel, known
as TRF, with the envelope of the speech. In the presence of
two speakers with equal loudness, we consider two TRFs,
namely attended and unattended TRFs, denoted by τa and τu,
respectively. The neural response mt at time t is then modeled
as:

mt = τa ∗ e(a)t + τu ∗ e(u)t + ηt, (1)

where e(a)t and e
(u)
t are the speech envelope of the attended

and unattended speakers, respectively, and ηt is a noise term
representing un-modeled neural processes and measurement
noise, which is commonly assumed as a zero-mean Gaussian
noise with covariance Σ, i.e., (η1, η2, · · · , ηT ) ∼ N (0,Σ). For
the simplicity of presentation, here we consider a univari-
ate neural response obtained from multi-channel recordings,
which is common practice in MEG analysis [22]. Also, the
speech feature is taken as the univariate acoustic envelope,
which is another common assumption in auditory neuroimag-
ing analysis [4], [21]. As we will explain later, extension of our
model to multi-channel recordings and multi-variate speech
features is straightforward.

As an example of a conventional AAD algorithm [4], [21],
the TRFs are first estimated from pilot/offline data, which then
provide two predicted MEG responses as:

m̂
(1)
t = τ̂a ∗ e(1)t + τ̂u ∗ e(2)t , speaker 1 attended,

m̂
(2)
t = τ̂a ∗ e(2)t + τ̂u ∗ e(1)t , speaker 2 attended,

(2)

where e
(1)
t , e(2)t are the speech envelopes of speakers 1

and 2, respectively. Then, the Pearson correlation coefficients
between the two predicted responses and the observed signal
are computed, and the prediction with the higher correlation
is decoded as the attended speaker. Then, the error rate of the
AAD can be evaluated using empirical data (Fig. 1, top panel).

In our information theoretic framework, we consider the
attentional state as a binary random variable X , taking the
value “1” if the listener attended to speaker 1 and taking the
value “0” if the listener attended to speaker 2. We also let
the MEG observations over a decision window of length T
be denoted by Y := (m1,m2, · · · ,mT ). Thus, the problem of
AAD can be thought of as decoding the transmitted message
X from the output of a noisy communication channel given
by Y (Fig. 1, bottom panel). In the next subsection, we
quantify the capacity and a lower error bound for this noisy
communication channel.

A. Computing the Channel Capacity

Recall that the mutual information (MI) between X and Y
is defined as:

I(X;Y ) := h(Y )− h(Y |X), (3)

where h(·) denotes the differential entropy. Letting p :=
P [X = 1], the channel capacity is defined as [18]

C := max
p∈[0,1]

I(X;Y ). (4)

Letting fi(y) := N (y;µi,Σi) denote the density of y when
speaker i is attended, i = 1, 2, with µ1 := τa ∗ e(1) + τu ∗ e(2)
and µ2 := τa∗e(2)+τu∗e(1), the density of y can be expressed
as:

pY (y) = P [X = 1]pY (y|X = 1) + P [X = 0]pY (y|X = 0)

= pf1(y) + (1− p)f2(y). (5)

We can thus express h(Y ) as:

h(Y ) =− pEf1 {log2 (pf1(y) + (1− p)f2(y))}
− (1− p)Ef2 {log2 (pf1(y) + (1− p)f2(y))} , (6)

where Ef{·} denotes expectation with respect to density f .
Also, we have:

h(Y |X) =
p

2
log2(2πe)T |Σ1|+

1− p
2

log2(2πe)T |Σ2|. (7)
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In order to compute the channel capacity, the expression
(h(Y ) − h(Y |X)) needs to be maximized with respect to p.
While h(Y |X) has a closed-form dependence on p, h(Y ) does
not. As such, we use Monte Carlo sampling to approximate
the expectations in Eq. (6):

h(Y ) ≈− 1

N

N∑
n=1

{
p log2

(
pf1(y(1)n ) + (1− p)f2(y(1)n )

)
+ (1− p) log2

(
pf1(y(2)n ) + (1− p)f2(y(2)n )

)}
, (8)

where y(i)n denotes the nth sample from fi(y), i = 1, 2, · · · , N ,
and N denotes the number of samples [23].

It is worth noting that drawing samples from high-
dimensional distributions and for a large number of iterations
is another significant challenge: In addition to the compu-
tational challenge of drawing samples from a multi-variate
distribution, the number of Monte Carlo samples required for
reliable approximations increases exponentially with the di-
mension, making it computationally expensive when working
with high-dimensional data and large sample sizes. To mitigate
the first issue, we utilized a reparametrization technique as
follows: To draw samples x from the distribution, N (µ, Σ),
we first consider the Cholesky decomposition of Σ = LL>.
Then, if z is an i.i.d. normal vector, x = Lz + µ would be a
sample from N (µ, Σ).

Next, the mutual information as a univariate function of p
can be maximized using standard numerical methods, which
gives the value of the capacity. Note that extension to multi-
variate neural response and multi-variate speech features is
straightforward: if there are K ≥ 1 MEG channels, and J ≥ 1
speech features, the output Y can be taken as data matrix
Y ∈ RK×T , and 2J TRFs will be used in the encoding
model (J per attended/unattended condition). Similarly, ex-
tension to multi-speaker environments with n > 2 speakers is
theoretically possible, but the optimization in Eq. (4) needs
to be carried out over a (n − 1)-simplex, which could be
computationally more challenging.

B. Lower Bound on Error

We observe the random variable Y that is related to X
by the conditional distribution pY (y|X). If X̂ is an estimate
of X based on Y , our goal here is to bound the probability
of error given by P [X̂ 6= X] [18]. To this end, we use the
Fanos inequality [18], [19], [24], [25] as follows: For any two
random variables X and Y and for any estimator X̂ such that
X → Y → X̂ , we have:

H(Pe) + Pe log2(M − 1) ≥ H(X|X̂) ≥ H(X|Y ), (9)

where Pe := P [X̂ 6= X], H(·) is the binary entropy function,
and M is the cardinality of X . Given that M = 2 in our
setting, the inequality in Eq. (9) is simplified to

Pe ≥ H−1 (H(X|Y )) , (10)

where H−1(·) is the inverse binary entropy function over
the domain [0, 1]. Note that H(X|Y ) = H(X) − I(X;Y ),
which can be estimated using Monte Carlo sampling as

before. Finally, the lower bound in Eq. (10) is computed by
considering a uniform prior p = 1

2 .

C. Parameter Estimation

The key parameters to be estimated for the characterization
of the model are the TRFs τa, τu and the covariance matrices
Σi, i = 1, 2. The TRFs are typically be computed using ridge
regression [26] or boosting [27]. Here, we use boosting with
a 10-fold cross-validation.

Estimating the covariance matrices in real data applications
poses a significant challenge, primarily due to the high di-
mensionality of the estimation problem, given limited data.
To address this challenge, we use the shrinkage estimation
method of [28]. Let {xi}Ni=1 be N vectors drawn from
a T -dimensional Gaussian distribution with zero mean and
covariance Σ. Despite the fact that the sample covariance
Ŝ := 1

N

∑N
i=1 x

>
i xi is the maximum likelihood estimator

and is nearly unbiased for for N � T , it may not achieve
a low Mean Squared Error (MSE) due to its high variance.
Moreover, it is ill-posed in the large T regime. A naı̈ve, but
well-conditioned estimator for Σ would be:

F̂ =
tr(Ŝ)

T
IT , (11)

where IT denotes the identity matrix in T dimensions and tr(·)
denotes the trace operator. However, this estimator reduces the
variance at the expense of a larger bias. To make the bias
reasonable, we consider the shrinkage of F̂ towards Ŝ by a
coefficient ρ ∈ (0, 1) [28]:

Σ̂ = (1− ρ)Ŝ + ρF̂ . (12)

The so-called oracle estimator Σ̂o is the solution to:

min
ρ

E
{
‖Σ̂o − Σ‖2F

}
s.t Σ̂o = (1− ρ)Ŝ + ρF̂ .

(13)

As shown in [29], for data with unknown sample distribution,
the solution to (13) is given by:

ρo :=
E
{

tr((Σ− Ŝ)(F̂ − Ŝ))
}

E
{
‖Ŝ − F̂‖2F

} . (14)

Under the Gaussian assumption in our model, Eq. (14) can be
expressed as:

ρo =
(1− 2/T ) tr(Σ2) + tr2(Σ)

(N + 1− 2/T ) tr(Σ2) + (1−N/T ) tr2(Σ)
. (15)

Given that the true covariance Σ is unknown, in [28] the
authors proposed an alternative iterative algorithm to ap-
proximate the oracle estimator with provable convergence
guarantees. Given an estimate of Σ̂` and ρ` at iteration `, we
update them as:

ρ̂`+1 =
(1− 2/T ) tr(Σ̂`Ŝ) + tr2(Σ̂`)

(N + 1− 2/T ) tr(Σ̂`Ŝ) + (1−N/T ) tr2(Σ̂`)
(16)

Σ̂`+1 = (1− ρ̂`+1)Ŝ + ρ̂`+1F̂ , (17)
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where the initial estimate Σ̂0 can be taken as either the sample
covariance or the Rao-Blackwellized estimate.

III. RESULTS

A. Simulation Studies

In our simulation setting, we considered an experiment in
which a subject was tasked with attending to one of two
speakers for a period of 60 seconds, and the experiment was
repeated 100 times. First, speech envelopes of the two speakers
were generated for each of the 100 trials. Attended and
unattended TRFs were then generated, preserving the general
characteristics of auditory TRFs. Next, the attentional states
were generated with equal prior probabilities and taken as the
ground truth. Subsequently, the speech envelopes and TRFs
were convolved to generate the predicted MEG responses, to
which noise was added. For simplicity, we considered equal
and diagonal covariance matrices Σ1 = Σ2. To simulate
realistic levels of noise, the noise variance was computed based
on an SNR level of −9 dB, compatible with that observed in
actual MEG recordings.

In computing the capacity and the lower bound, the TRFs
were estimated using the boosting method described in Section
II-C. We considered two AAD approaches: 1) the Bayes’
classifier, which computes the posterior probability P (X|Y )
and decodes the attentional state based on maximum posterior;
2) We used a correlation-based decoder [4], [21] that calculates
the Pearson correlation coefficients between the predicted and
observed neural responses and decodes the attentional state
based on maximum correlation value.

Since our goal is to analyze how the capacity and the
error bound of AAD vary with the available evidence at each
decision window, we selected a range of decision window
lengths from 1 s to 60 s. For each window length, we
performed AAD using the aforementioned methods and then
computed the empirical error rate.

Fig. 2A shows the capacity as a function of the decision
window T as described in Section II-A. As it can be observed
from the figure, at T > 30 s, the capacity gets close to 1
bit, implying that there is sufficient information in 30 s of the
neural response for reliable recovery of the attentional state.
Fig. 2B shows the error rate of the Bayes’ and correlation-
based decoders, as well as the theoretical lower bound of
Section II-B. For large values of T ∼ 60 s, both the AAD
error rates and the lower bound tend to 0, which is expected.
However, for small values of T up to 10 s, the AAD methods
perform near chance level. Interestingly, there is a significant
gap between the lower bound and the AAD error rates for
small values of T .This performance gap has two implications:
First, for near real-time applications in which T ∼ 1 s, the
theoretical lower bound gives an unimprovable error rate floor
of ∼ 27%; second, there is theoretically room for improvement
by existing AAD algorithms to reach the error rate floor. While
the latter provides a benchmark for performance improvement,
using more elaborate speech features and access to multi-
channel data with higher SNR could mitigate the former.
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Fig. 2. Results of the simulation study. A) AAD channel capacity as a function
of T . B) The error rates of the Bayes’ and correlation-based decoders, as
well as the theoretical lower bound. The colored hulls show 90% confidence
intervals.

B. Analysis of Experimentally-recorded MEG Data

We used an MEG dataset obtained in a cocktail party
experiment in which 10 subjects listened to a mixture of
two speeches for 60 seconds, over 6 trials [30]. TRFs were
computed at a sampling rate of 250 Hz and then everything
downsampled to 25 Hz to speed up the computations. We
used the Denoising Source Separation (DSS) algorithm [22]
to extract the auditory component of the neural response from
MEG data and consider the dominant DSS component as the
univariate neural response. The length of the TRF kernels
was chosen to correspond to 500 ms, consistent with existing
literature [21]. We then carried out the same steps as described
in Section III-A. Note that the covariance matrices, in this case,
are not diagonal and are thus estimated using the shrinkage
method of [28] as described in Section II-C.

Fig. 3 shows the error rate of the Bayes’ and correlation-
based decoders, as well as the theoretical lower bound of
Section II-B. Consistent with our simulation study, for large
values of T ∼ 60 s, both the AAD error rates and the lower
bound tend to 0. Similarly, for small values of T up to 10 s,
the AAD methods perform near chance level. We observe the
same gap between the theoretical lower bound and the AAD
error rates as in the simulation study, for small values of T .
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Fig. 3. Results of the real MEG data analysis. The error rates of the Bayes’
and correlation-based decoders, as well as the theoretical lower bound. The
colored hulls show 90% confidence intervals.

IV. CONCLUSION

We considered an information-theoretic approach for quan-
tifying the fundamental theoretical limits of AAD. We cast
the AAD problem as decoding a message from a noisy com-
munication channel and used the channel capacity and Fano’s
lower bound to quantify the aforementioned trade-offs. Our
approach provides an algorithm-agnostic lower error bound,
which can be used to benchmark and assess the performance
of existing AAD algorithms. In particular, we demonstrated
the impact of limited decision window on the achievable
accuracy of AAD decoders in near real-time scenarios. In
future work, we will consider an extension of the proposed
approach to more complex auditory environments, to more
elaborate speech features beyond the acoustic envelope, and
to multi-channel EEG/MEG data, and will use the resulting
theoretical bounds to benchmark a wider range of existing
AAD algorithms.
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