Foreground and Background at the Cocktail Party—Psychophysics & MEG
The Interaction Between Attention and Auditory Pop–out

Juanjuan Xiang
Mounya Elhilali
Shihab Shamma
Jonathan Z. Simon

University of Maryland, College Park
Introduction
Introduction
Experimental Paradigm

Null Condition

Target Condition

Masker Condition

Target & Masker Condition

Target rate: 4Hz
Target rove: 250-500 Hz
Duration: 5.5 s
Protection Zone:
4, 8, 12 st/ 8 st
Band: 5 Oct @ 353 Hz
Tone dur: 75 ms
Target dev: +/- 2 st
Masker dev: 400 ms
Behavior for Target and Masker Tasks

Target Task Performance

Masker Task Performance

Protection Zone (semitones)

Behavior alone (N=9)
Behavior during MEG (N=12)
MEG Measures Neural Currents

- MEG = Magnetoencephalography
- Direct electrophysiological measurement
 - not hemodynamic
 - real-time
- No unique solution for distributed source

Magnetic Dipolar Field (Projection)

orientation of magnetic field

recording surface

current flow

SourceSink

40 ft/Step

Computational Sensorimotor Systems Laboratory
Neural Response to Target vs. Behavior

![Graph showing the relationship between Neural Response to Target and Behavior (Target)](image)
Effect of Target Frequency
Auditory Pop-out

Low-frequency Target

High-frequency Target
Effect of Target Frequency
Auditory Pop-out

Target Task

- Low-frequency Target
- High-frequency Target

Behavior (Target)

Masker Task

- Low-frequency Target
- High-frequency Target

Behavior (Masker)

Behavior from MEG (N=12)
Effect of Target Frequency
Auditory Pop-out

Target Task

- **Behavior (Target)**
- **Neural (Target)**

Masker Task

- **Behavior (Masker)**
- **Neural (Target)**

- **Normalized Neural Response to Target**

- **Low-frequency Target**
- **High-frequency Target**

- **Normalized Neural Response to Target**

- **Low-frequency Target**
- **High-frequency Target**

- **Neural response (N=12)**
- **Behavior from MEG (N=12)**

- **Behavior from MEG (N=12)**
Behavioral & Neural Build-ups

![Graph showing normalized neural response to target over time after sequence onset](image)

- **Behavioral Buildup (Target)**
- **Neural Buildup (Target)**

- **Orange line**: Behavioral response (N=12)
- **Gray line**: Neural response (N=12)

Target Task
Summary

- Strong Neural Response to Target
- Attention strongly modulates Neural Response
- Behavior correlates with Neural Response
- Auditory Pop-out
 - Target Pop-out correlates with Neural Response
 - Target Pop-out interferes with Masker Task
- Similar buildup for Behavior & Neural Response
Thanks to
David Poeppel
Jeff Walker
Carol Espy-Wilson
Christophe Micheyl
Bob Carlyon

Supported by
NIDCD & NIA
Effect of Target Frequency Auditory Pop-out

Target Task Performance

Masker Task Performance
Complex Magnetic Field
Complex Equivalent–Current Dipoles

\[\vec{V} = \vec{V}_{Re} + i \vec{V}_{Im} \]

\[\vec{V}(\theta) = \vec{V}_{Re} \cos(\theta) + \vec{V}_{Im} \sin(\theta) \]

Two Dipole Fit

\text{"Phase"} \rightarrow \theta_{Max}

\text{\textbf{\textquotedblright}Strength\textbf{\textquotedblright}} \rightarrow \vec{V}_{Max}

\text{\textbf{\textquotedblright}Sharpness\textbf{\textquotedblright}} \rightarrow \eta = \frac{|V_{Min}|}{|V_{Max}|}

0 < \eta < 1

Physiologically Simple Current Sources: \(\eta = 0 \)

\text{\textbf{\textquotedblright}Orientations\textbf{\textquotedblright}}

\(\hat{V}_{Max}, \hat{V}_{Min} \)
Time Course of MEG Responses

Evoked Responses
MEG Events Time-Locked to Stimulus Event

Pure Tone

Broadband Noise