Robust Neural Encoding of Speech in Human Auditory Cortex

Nai Ding, Jonathan Z. Simon

Electrical Engineering / Biology

University of Maryland, College Park
Auditory Processing in Natural Scenes

How is the stable perception of sound generated from degraded acoustics?
Auditory Processing in Natural Scenes

How is the stable perception of sound generated from degraded acoustics?

Magnetoencephalography (MEG)

MEG measures spatially synchronized dendritic current.
Outline

• Cortical Encoding of Speech in MEG
 Representation of Spectro-temporal Features

• Cortical Code despite Energetic Masking
 Speech in Stationary Noise

• Cortical Code despite Informational Masking
 Segregation of Simultaneous Speakers
MEG Response to Speech

Speech Stimulus

MEG Response

frequency

time

Computational Sensorimotor Systems Laboratory
Large-scale synchronized cortical activity is phase locked to slow temporal modulations of speech.

Neural Reconstruction

The temporal envelope of speech can be reconstructed from the MEG response.

stimulus speech envelope

speech envelope reconstructed from MEG response

2 seconds

Subject: R1747
Outline

• Cortical Encoding of Speech in MEG
 Representation of Spectro-temporal Features

• **Neural Coding under Energetic Masking**
 Speech in Stationary Noise

• Neural Coding under Informational Masking
 Segregation of Simultaneous Speakers
Speech Embedded in Noise

Clean Speech

SNR: 6 dB

SNR: -2 dB

SNR: -9 dB

Intelligibility:

100 %

70 %

5 %

10 participants; 2 minutes of stimulus in each condition
Neural Reconstruction of Speech

The temporal envelope of the underlying speech is reconstructed neurally from cortical response.
Contrast Gain Control

Neural compensation for noise-induced loss of stimulus contrast

Amplitude-Intensity Function

Amplitude Growth Rate

30 dB

12 dB
Adaptive Encoding of Modulations

Noise contains more energy at higher modulation rate, and therefore interfere with speech more at high modulation rates.
Adaptive Encoding of Modulations

Neural sensitivity profile shifts away from the modulation rates heavily corrupted by noise.
Outline

- Cortical Encoding of Speech in MEG
 Representation of Spectro-temporal Features
- Neural Coding under Energetic Masking
 Speech in Stationary Noise
- Neural Coding under Informational Masking
 Segregation of Simultaneous Speakers
Diotic Speech Segregation

Two speakers, one male and one female, were mixed and presented diotically. The subjects were instructed to focus on one or the other speaker.

The MEG response is modeled using two STRFs, one for each speaker.
Neural Unmixing of Concurrent Speakers

Neurally decoded envelope is more correlated with the attended speaker in >90% of single trials.

\[P << 0.001 \]
Summary

• 1. Neural processing adapts to noise.
• 2. Simultaneous speakers can be neurally segregated and processed differently.
• 3. Cortical encoding is precise yet dynamic: modulated by both stimulus acoustics (bottom-up) and attention (top-down), and leading to a robust encoding of speech in natural scenes.
Acknowledgement

• We thank Stephen David, David Poeppel, Mary Howard, Shihab Shamma, and Monita Chatterjee for discussions!

• SfN poster: 172.11/KK6 (Sunday, 10 -11)

• Contact:
 • gahding@umd.edu Nai Ding
 • jzsimon@umd.edu Jonathan Z. Simon
Thank you!
Adaptive Encoding of Modulations

Neural sensitivity profile shifts away from the modulation rates heavily corrupted by noise.

Modulation Spectrum of Stimulus

Response Spectrum

Frequency (Hz)

![Graph](image)
STRF from MEG and LFP

MEG STRF

LFP from ferret AI

(in collaboration with Stephen David and Shihab Shamma)