443

ORSA Journal on Computing
Vol. 7, No 4, Fall 1995

0899-1499 /95 /0704-0443 $01.25
© 1995 INFORMS

Solving a Class Scheduling Problem with a
Genetic Algorithm

JEFFREY W. HERRMANN / Institute for Systems Research, A.V. Williams Building, University of Maryland, College Park,
MD 20742; Email: jwh2@eng.umd.edu

CHUNG-YEE LEE / Department of Industrial and Systems Engineering, 303 Weil Hall, University of Florida, Gainesville,
FL 32611, Email: lee@ise.ufl.edu

(Received: June 1992; revised: May 1994; accepted: June 1994)

In this paper, we study the one-machine scheduling problem of
minimizing the total flowtime subject to the constraint that each
job must finish before its deadline, where the jobs to be
scheduled fall into different job classes and setups occur
whenever the machine processes consecutive jobs from differ-
ent classes. A new heuristic is proposed for the problem. We
investigate the use of a genetic algorithm to improve solution
quality by adjusting the inputs of the heuristic. We present
experimental results that show that the use of such a search
can be successful.

The processing of jobs on a machine or a set of machines
often involves a significant cost or time when changing
from one job to the next; this cost or time is called the
changeover or setup. If the setup for a job is independent of
the job that was processed before it, the setup time or cost
can be included in the processing requirements of that job.
If the setup for a job is sequence-dependent, that is, the cost
or time of the setup depends upon the immediate predeces-
sor, the scheduling problem becomes quite difficult.

One important problem with sequence-dependent setups
is the class scheduling problem, where the jobs to be pro-
cessed form a number of job classes. There exists no setup
between jobs from the same class, although there does exist
a special setup, the class setup, when a job from one class is
processed after a job from another class. These class setups
may be sequence-dependent in that they depend upon both
the class of the current job and the last class processed.
There may also exist a class setup for the first job pro-
cessed. In this paper, we wish to minimize the sum of the
job completion times subject to the constraint that no job
may be tardy.

Monma and Potts?®! describe a few examples of class
scheduling problems, including paint production machines
that are cleaned between the production of different colors,
a computer system that must load the appropriate compiler
for a type of task, and a limited labor force with workers
switching between two or more machines.

This research is motivated by the scheduling of semicon-
ductor test operations. Assembled semiconductor devices
must undergo electrical testing on machines that can test a

Subject classifications.

number of different types of semiconductors. If a machine
is scheduled to test a lot consisting of devices that are
different from the devices tested in the previous lot, vari-
ous setup tasks are required. These tasks may include
changing a handler and load board that can process only
certain types of semiconductor packages or loading a new
test program for the new part. However, if the new lot
consists of circuits that are the same as the previous type,
none of this setup is required. This type of change is a
sequence-dependent setup that can be modelled by class
scheduling.

Since post-assembly testing is the last stage in semicon-
ductor manufacturing, meeting a job’s due date is a very
important objective for the manager of a test facility. A
secondary criterion is the minimization of total flowtime
(the sum of the job completion times), which reflects the
manager’s desire to increase throughput and decrease in-
ventory holding costs.

This is a dual criteria problem, in which the primary
criterion is used as a constraint and the secondary criterion
is optimized under this restriction. The problem of mini-
mizing the total flowtime subject to deadlines is an old
problem. Smith®"! provides an optimal solution technique
that repeatedly schedules the longest eligible job last. The
class scheduling version of the problem, however, is a more
difficult question.

For our problem, finding a feasible schedule is an NP-
complete problem. (A schedule is feasible if every job
finishes before or at its deadline.) Thus, there exist no exact
algorithms to minimize in polynomial time the total flow-
time subject to the deadline constraints. (For a discussion of
the theory of NP-completeness, see Garey and Johnson.'?))
Thus, we are motivated to try different heuristics. In this
paper we develop a multiple-pass heuristic that finds good
solutions quickly. The first contribution of our investigation
of this problem is the extension of Smith’s algorithm into a
heuristic which considers the setup times while sequencing
the jobs by their deadlines and processing times.

We are also interested in using a genetic algorithm to
improve the quality of our solutions. A genetic algorithm is

Production/scheduling. deterministic, sequencing, sequence-dependent set up.

Copyright © 2001 All Rights Reserved

444

Herrmann and Lee

a heuristic search that has been used to find good solutions
to a number of different optimization problems, but genetic
algorithms searching for good schedules must overcome
the difficulty of manipulating the sequences of jobs. We
investigate the use of a genetic algorithm to search a new
type of space, the problem space. This type of approach
was introduced by Storer, Wu, and Vaccari,®® who con-
sider alternative search spaces for the general job shop
scheduling problem. In this paper, we extend the idea to
the problem of one-machine class scheduling.

Our genetic algorithm attempts to adjust the deadlines
of the given problem so that our heuristic will find even
better solutions. The space of adjusted deadlines that we
search forms a problem space (problem and heuristic space
will be described more fully in Section 4). The second
contribution of this paper is our use of this method to
improve the scheduling of a single-machine problem.

If we use the principles of Davis,”®} then we can classify
our genetic algorithm as a type of hybrid genetic algorithm.
However, the only unusual characteristic of our algorithm
is the decoding (the bit string does not describe a point in
the solution space; instead it must be mapped to a solution
via the heuristic). Moreover, the range of hybrid genetic
algorithms is so large (for instance, Goldberg!*® describes
hybrids differently) that our use of the term problem space
genetic algorithm is a more precise description of the search.
Finally, this problem space exists independently of the
genetic algorithm, and the use of this new search space is
not limited to our search. Other searches (including steep-
est descent, simulated annealing, and tabu search) could be
used to explore the space. Therefore, we will continue to
refer to our search space as a problem space and to our
search as a problem space genetic algorithm.

The next section of this paper summarizes some of the
relevant literature on class scheduling problems and the
dual criteria objective under consideration. In Section 2, we
discuss our notation, an example instance of the problem,
and a number of basic results. We discuss in Section 3 the
heuristic developed for the problem. Our genetic algorithm
will employ this heuristic. In Section 4, we present a prob-
lem space, introduce genetic algorithms, and discuss the
details of the genetic algorithm we developed to search the
problem space. Section 5 describes the generation of the
sample problems, the computational experiments, and the
results. Finally, in Section 6, we present our conclusions
and some directions for future research.

1. Literature Review

In this section we will summarize some of the relevant
research on class scheduling and on the dual criteria prob-
lem of minimizing total flowtime subject to job deadlines.
We will review the literature on genetic algorithms in
Section 4.

One of the first papers on problems with class schedul-
ing characteristics is Sahney 2’ who considers the problem
of scheduling one worker to operate two machines in order
to minimize the flowtime of jobs that need processing on
one of the two machines. Sahney derives a number of
optimal properties and uses these to derive a branch-and-

bound algorithm for the problem. Gupta'*! defines the
class scheduling problem, and Potts®?”] and Coffman,
Nozari, and Yannakakis?! also study two-class scheduling
problems and develop algorithms to minimize total flow-
time in polynomial time. Ho!’® studies the problem of
minimizing the number of tardy jobs with two job classes.

Bruno and Downey®! prove that, for more general class
scheduling problems, the question of finding a schedule
with no tardy jobs is NP-complete. Monma and Potts[?’!
prove that many class scheduling problems are NP-com-
plete, including minimizing makespan, maximum lateness,
the number of tardy jobs, total flowtime, and weighted
flowtime. They also develop a dynamic programming algo-
rithms that are exponential in the number of classes to
solve the problem.

Dobson, Karmarkar, and Rummel® consider a class
scheduling problem with the objective of minimizing flow-
time under both the item-flow and batch-flow delivery
schedules. Dobson, Karmarkar, and Rummel*®! extend this
work to uniform parallel machines. Guptal’® and Ahn and
Hyun!") study the class scheduling problem of minimizing
flowtime and present heuristics to find near-optimal sched-
ules. We will modify the procedure of Ahn and Hyun in
order to use it as a comparative heuristic. Mason and
Anderson? study the problem with the objective of mini-
mizing weighted flowtime and develop a branch-and-
bound algorithm using some dominance criteria and a
lower bound. The only other dual criteria problem in this
area is studied by Woodruff and Spearman;®® they con-
sider a class scheduling problem with profit maximization
and deadlines and use a tabu search to find good solutions.

In the dual criteria literature, the problem of minimizing
total flowtime subject to job deadlines (a deadline is a
constraint on the completion time) is among the oldest
questions, being first studied by Smith.*! The problem of
minimizing the weighted flowtime subject to job deadlines
is a strongly NP-complete problem,?”! and different elimi-
nation criteria and branch-and-bound techniques have ap-
peared. Potts and Van Wassenhovel®® study the La-
grangian relaxation of the deadline constraints, leading to
the discovery of optimal solutions. Work by Posner?¢! and
Bagchi and Ahmadi®?! present improved varieties of this
bound. Many other problems have been studied; see Her-
rmann, Lee, and Snowdon!'”! for a survey of dual criteria
problems.

2. Notation and an Optimal Property

In this section we introduce our problem and notation, give
an example instance of the class scheduling problem under
consideration, and present some basic results.

Our class scheduling problem is the minimization of the
total flowtime of a set of jobs where the jobs have deadlines
on their completion. The problem can be formulated with
the following notation:

J, Jobj, j=1,...,n

p, processing time of],
D, deadline of],

G, jobclassi,i=1,...,m

Copyright© 2001 Al Rights Reserved

445

Solving a Class Scheduling Problem

n, number of jobs in G,

o, time of initial setup if first job is in G,
Sy, time of setup between jobs in G, and G,
C, completion of],

%C, total flowtime.

The problem is to find a sequence that minimizes the
total flowtime (2C)) subject to the deadline constraints
(C, < D, for all]). We name this problem the Constrained
Flowtime with Setups problem (CFTS). Since job preemption
or inserted idle time leads to a non-optimal solution, we
will assume that the schedules being considered have nei-
ther. Any schedule that is a solution for CFTS will have a
number of batches or runs that are sets of jobs from one
class processed consecutively. Before each batch will be a
class setup. The problem involves determining the compo-
sition and order of batches from different classes.

CFTS is an extension of a one-machine problem studied
by Smith.? In this problem, which we name the Con-
strained Flowtime problem (CFT), there exists no sequence-
dependent setup times. An instance that we will use to
illustrate our work is described in Example 1.

Example 1. The data in Table I form an instance of a class
scheduling problem with five jobs in two job classes. The
first three jobs form one class, with the remaining two jobs
in the second class. Recall that no setup is required be-
tween jobs in the same class. However, a class setup is
necessary between jobs of different classes, and this setup
is sequence-dependent.

CFTS is an NP-complete problem since finding a feasible
schedule for NP-complete.’] Hence, it is unlikely that any
polynomal algorithm to solve the problem exists, and con-
sequently we study the use of heuristics to find good
solutions.

We now describe Smith’s rule for CFT and an optimal
property for CFTS. Our new heuristic extends Smith’s rule
by taking advantage of the optimal property, which we call
Smith’s property.

In this and later sections, we will refer to each job that
can complete at a given time without violating the job’s
deadline as being eligible. In this problem, we are con-
cerned with deadlines that are constraints on the comple-
tion times, and we will create schedules backwards, start-
ing with the last position in the sequence. Thus, we say that
ajob J, is eligible at a time ¢ if D, > t. The job can feasibly
complete at this time without violating the deadline con-
straint.

TableI. Job and Class Data for Example 1

i 1 2 3 4 5

p, 1 2 2 3 2

D, 3 16 14 10 18
G, =(1,2,3} n, =3 Sor =Sy = 2,8, =0

S2=2,5=150=0

Smith’s rule for CFT states that if a job is assigned the
last position of an optimal schedule, then it must be the
longest eligible job.

Algorithm 1. (Smith’s rule for CFT). Let ¢t = p, + - +p,.
Among the jobs that are eligible at time ¢, that is, D, > ¢,
choose the job J with the longest processing time p,.
Schedule]] to complete at t, and solve the remaining
problem in a similar manner.

The following property extends Smith’s rule to each class
in CFTS. This property will then be extended to consider all
classes in order to generate approximate solutions to CFTS.

Lemma 1. (Smith’s property for CFTS). For each class in an
optimal schedule for CFTS, the only job that could be scheduled
to complete at a time t is the longest eligible one.

Proof. 1t suffices to show that if two jobs], and J, in the
same class are both eligible at time ¢ and], is longer than
J, (p, > p,), then scheduling J; to complete at time ¢ leads
to a non-optimal solution. Suppose we do. Then C, = ¢, and
J, precedes] in the schedule formed. Create a new sched-
ule by interchanging the two jobs. Since], is moved to the
left, it is still feasible, and the new completion time is less
than C, the old completion time of], (p, > p,). The com-
pletion times of any jobs between], and J, are decreased.
Meanwhile,], completes when]] did, but this is feasible
since D, > t. We have therefore created a feasible schedule
with less total flowtime, and the original schedule cannot
be optimal. QED.

3. The Heuristic

Quick methods of finding good solutions are sometimes
effective ways to attack difficult problems. In this section
we describe a multiple-pass heuristic that extends the idea
of Smith’s rule. We illustrate how this heuristic works
using Example 1.

Our heuristic finds solutions for CFTS by scheduling jobs
in the spirit of Smith’s rule, working backwards from the
end of the schedule. Since the makespan (the maximum
completion time) of the optimal solution is not known, the
heuristic starts with a trial makespan. After scheduling all
of the jobs, we compute the actual makespan (by removing
any idle time) and use this makespan as the starting point
for another iteration. We continue this process until some
limiting makespan is reached. At this point, another pass of
the heuristic yields a schedule with the same makespan or
a schedule that is infeasible (because some job or setup
starts before time zero).

This heuristic constructs schedules that satisfy Smith’s
property (Lemma 1). While that lemma applies only to jobs
in one class, our algorithm extends the idea of longest
eligible job by considering all of the job classes. We sched-
ule the longest job with the minimum wasted time. Wasted
time is time spent in a setup and idle time.

This (single-pass) Minimum Waste algorithm schedules
an eligible job from the same class as the previously-sched-
uled job if one exists. Else, it selects a job from the class
with the smallest setup or selects the job with the latest
deadline. It does this by measuring each job’s gap: the

Copyright © 2001 All Rights Reserved

448

Herrmann and Lee

wasted time incurred by selecting that job. Note that if no
class setups exist, this algorithm is the same as Smith’s rule
(Algorithm 1).

Algorithm 2. (Single-pass) Minimum Waste.

Step 0: Given a completion time ¢, select for the last job the
longest]J eligible at this time, i.e. D] > t. Schedule
this job to end at ¢, and reduce ¢ by p,.

(a modification to Smith’s rule): Suppose that at
time ¢, a job from class G; starts. Then, for each
unscheduled job], define g, as the gap between
the last possible completion time of], and t.If], is
in class Gy, 4, = max{t — D,, 5;,} (see Remarks be-
low for an explanation of this definition). Let g =
min{g, over unscheduled] }. Select the longest job
], with g, = g and schedule this job toend at ¢ — 4.
Any necessary setup s, can begin at ¢ — g. Reduce
t by gand p,.

If there remain unscheduled jobs, return to Step 1.
There are no more unscheduled jobs. If the first job
in the schedule is in class G,, a setup of length s,
must end at ¢. Reduce ¢ by this amount.

If t <0, the schedule created is infeasible. Else,
compute the actual makespan of the jobs and se-
tups scheduled.

Step 1:

Step 2:
Step 3:

Step 4:

Remarks. In order to motivate the definition of g,, the gap,
let us note that the setup after], is s,, so the job may not
complete after ¢t — s,,. However, if the deadline D, <t —
Sy, the gap will be g, = t — D), which is greater than s;,.
This gap thus includes the setup and a period of inserted
idle time of length t — D, — s,. Note that if], is also in the
class G, g, =0 if and only if D, > t. The algorithm is a
type of greedy heuristic, in that it attempts to minimize the
setup time or idle time in selecting jobs to be scheduled.

Multiple-Pass Minimum Waste Heuristic. To find a good
solution for CFTS, we can use the following procedure that
makes use of the single-pass Minimum Waste algorithm.

Step A:

Step B:
Step C:

Let t' = max{D]: j=1,...,n}.

Let t =t

Perform one pass of the Minimum Waste algo-
rithm (Algorithm 2) with completion time ¢. This
creates a new schedule.

Let # be the sum of processing times and setup
times of this schedule. If ' < t and the new sched-
ule is feasible, go to Step B. (The smaller makespan
may yield another new schedule.)

If the new schedule was infeasible or t' = t, take
the last feasible schedule created and remove the
inserted idle time, starting all jobs as soon as
possible. This schedule is the result of the heuris-
tic. If an infeasible schedule was created on the
first pass, then take the sequence of jobs from the
schedule and process the jobs in this order, start-
ing at time zero. This will yield a schedule with
some violated deadline constraints.

Step D:

Step E:

Because the problem of finding a feasible schedule is
NP-complete, a single pass of the Minimum Waste algo-

rithm is not guaranteed to find one. Still, as we shall see, it
is usually able to find a feasible schedule if one exists. If a
feasible schedule exists, it must finish by the maximum
deadline, which is the first trial makespan. Initially, the
heuristic is concerned with reducing the makespan. Even-
tually, as the makespan reaches a lower limit, the algorithm
concentrates on the flowtime objective through its use of
Smith’s property to select a job.

Example 2. This example shows the results of applying the
Multiple-Pass Minimum Waste heuristic to Example 1. In
the first iteration, ¢ = 18, the maximum deadline. The first
pass of the Minimum Waste algorithm performs the follow-
ing calculations (see Table II for complete algorithm): at
time 18, no jobs have been scheduled, and the only eligible
job is Js. After choosing Js, ¢ is reduced by ps =2 to 16.
For J;,], and J,, the waste g, is the gap until the deadline.
Thus, g, = 16 — D, = 13, and similarly for the other two
jobs. For J,, however, D, = 16, and the deadline gap is
zero, but because [, is in a different class than J5, g, = s,
= 1. Thus,], has the smallest waste and is scheduled to
end at time 15. After five steps, all of the jobs are scheduled
(see Figure 1). There are two units of inserted idle time,
however, so the actual makespan of the schedule can be
reduced to 16.

When the heuristic repeats the algorithm with the new
makespan of 16 (see Table III for calculations), jobs], and
Js are eligible at time 16. These jobs also have the same
processing time, but suppose |, is chosen. Then, at time 14,
J5 is eligible and has no gap, as it is in the same class as J,.
However, Js has a gap 45 = sy, = 2. The algorithm con-
tinues in this manner, creating the schedule shown in
Figure 2.

The Multiple-Pass Minimum Waste Heuristic again re-
peats the algorithm, which now begins at the reduced
makespan of 15, and a similar schedule can be found if J,
is chosen at time 15. This schedule has no idle time (see
Figure 3), the reduced makespan is also 15, and so the
heuristic stops.

4. The Genetic Algorithm

4.1. Problem Space
The original work on problem and heuristic spaces is by
Storer, Wu, and Vaccari,?>%¥ who define some alternative

Table II. Calculations of the First Pass of the
Minimum Waste Algorithm (Initial Makespan = 18)
Waste Schedule
Time I J2 I3 Js Js J, o
18 15 2 4 8 0 Js 18
16 13 1 2 6 15 15
13 10 0 3 I3 13
11 8 2 In 9
6 3 J1 3

Scheduled flowtime: 58.
Reduced makespan: 16.

Copyright © 2001 All Rights Reserved

447

Solving a Class Scheduling Problem

Pl % T a1l % [%
13

o] 5]
15 16 18

[S [hh]

0 2 3 5 6 9 11

Figure 1.

Schedule created on first pass of heuristic.

search spaces for the job shop scheduling problem: the
problem space and the heuristic space. They note that a
solution to the problem is the result of applying a heuristic
to a problem. Given a problem p, a heuristic # is a function
that creates a sequence corresponding to a solution s, i.e.,
h(p) = s. Thus, if one adjusts the heuristic, one creates a
different solution. The set of adjusted heuristics is the
heuristic space. Likewise, if one adjusts the problem data
that are used by the heuristic, one generates a different
solution. This set of adjusted problem data is the problem
space. The idea is applied to the job shop scheduling
problem, and different heuristic searches over the spaces
are performed, including hill climbing, genetic algorithms,
simulated annealing, and tabu search.

Our research extends this idea by defining a problem
space for the one-machine class scheduling problem. If we
adjust the deadlines that are the inputs (along with the
other problem data) to a pass of the Minimum Waste
algorithm, we will create a different schedule. We will use
as a problem space for CFTS these adjusted deadlines, and
we will use one pass of the Minimum Waste algorithm to
create a sequence of jobs using the adjusted deadlines. The
feasibility (against the actual deadlines) and total flowtime
of the sequence can be evaluated by scheduling the jobs to
start at time zero with no inserted idle time. The idea is to
force jobs to be done earlier or later by decreasing or
increasing the deadlines. Note that every solution for CFTS
(including the optimal one) is in the range of h:

Theorem 1. For each solution to an instance of CFTS, there
exists a vector of adjusted deadlines that can be mapped to that
solution using one pass of the Minimum Waste algorithm.

Proof. Suppose that o is a solution (a feasible schedule
with no preemption or inserted idle time) for an instance of
CFTS. For each job, consider adjusting the deadline so that
it equals the job completion time. Then, if we use one pass
of the Minimum Waste algorithm with the adjusted dead-
lines, the job selected for the last position will be the job

Table III. The Second Pass of the Minimum Waste
Algorithm (Initial Makespan = 16)

Waste Schedule

Time I J2 Is Ja s]] C ’

16 13 0 2 6 0 I> 16

14 11 0 4 2 I3 14

12 9 2 2 I4 10

7 4 0 s 7

5 2 A 3

Scheduled flowtime: 50.
Reduced makespan: 15.

Lo IO Tl 5 T TS5 [Th 15]
Q 2 3 4 5 7 10 12

Agure 2. Second schedule.

with the maximum adjusted deadline. This job is the one
with the maximum completion time C, and thus was the
last job in . It will be scheduled to complete at its
adjusted deadline, which is C,.

Now we are at the start time ¢ of a job], and the job
with the smallest gap is the unscheduled job], that imme-
diately precedes J, in o, since the adjusted deadlme is C
and C, <t Any setup necessary between [and J, i
already included in the difference between C, and t. Thus
the gap cannot be larger for this job, and the gap for any
other job J, is larger since C; < C,. This job will be sched-
uled to complete at its adjusted deadlme which is C,. If we
continue in this manner, all of the jobs will be sequenced in
the same order as they were in ¢, and we create the same
schedule. QED. m

The more we adjust the deadlines, the more change we
create in the schedule. For instance, consider the following
examples of applying one pass of the Minimum Waste
algorithm to vectors of adjusted deadlines where we have
changed only the second and fifth deadlines (Note that the
fourth schedule created is infeasible since J, completes at
time 18, which is greater than the actual deadline: D, = 16.
The adjusted deadline of 19 was used only to sequence the
jobs.):

Heuristic (problem) = solution:
Minimum Waste (3, 6, 14, 10,20) = [1 2 4 3 5], flowtime
46.

Minimum Waste (3, 16, 14, 10, 18) =
time 50 (original deadlines).
Minimum Waste (3,17, 14, 10, 16) =

[14 32 5], flow-

[154 3 2], flow-

time 46.
Minimum Waste (3,19, 14,10,17) = [1 4 3 5 2], infeasi-
ble (C, = 18).

In Figure 4 we show a graph that illustrates how adjust-
ing just two of the five deadlines of Example 1 can create a
number of different schedules. The first, third, and fourth
deadlines were not adjusted. Each point in the plane (only
non-negative deadlines were considered) corresponds to a
pair of values for the second and fifth adjusted deadlines.
Each point within a region of the plane is mapped by a
pass of the Minimum Waste algorithm to the job sequence
denoted by the five-digit sequence shown in that region.
The dot marks the point that corresponds to the unadjusted
deadlines (D, = 16, Dy = 18). The best sequences achiev-
able by adjusting these cleadlmes are 12435 and 15432 (total
flowtime = 46), and the only other feasible sequences are

2 [[h]
15

LS [l I T T 7
0 2 03 4 6 9 1 13
Figure 8. Third and final schedule.

Copyright © 2001 All Rights Reserved

448

Herrmann and Lee

21438 12435 14235 14325
18 .
B / / 14352
£
s 14 -
<
[}
o
wn
_g 21543 12543 15423 15432
=
6
3 P
52143 51243 623 51432
4>
3 6 10 14 18

Job 2 Deadline

Fgure 4. Graph of adjusted deadlines and schedules cre-
ated.

14235 and 14325 (total flowtime = 50). The optimal solu-
tion (which cannot be found by adjusting only the second
and fifth deadlines) is 13452, with total flowtime = 43.

Since the actual problem space consists of all of the
problem data and there are numerous heuristics that can be
used, we can investigate a couple of other spaces and
heuristics that might be useful. Our first search was to
adjust the job processing times and to use Shortest Process-
ing Time (SPT) rule. However, it is difficult to find feasible
solutions since SPT ignores the deadline constraints en-
tirely. We also tried the using the Earliest Due Date (EDD)
rule while adjusting the deadlines, but EDD does not give
enough attention to the flowtime objective. Sequencing by
either SPT or EDD is a fairly dumb heuristic, since neither
makes use of the other available information. The Mini-
mum Waste algorithm, however, considers due dates, pro-
cessing times, and setups, and using it improves our
searches. In addition, while it would be possible to use the
Minimum Waste algorithm while adjusting the processing
or setup times, the effect of these variables on the sequenc-
ing of jobs is more indirect than that of the deadlines.

4.2, Genetic Algorithms

A genetic algorithm is a heuristic search, a term that also
refers to smart-and-lucky searches like tabu search and
simulated annealing. These searches are smart enough to
avoid becoming trapped in local optima and lucky enough
to generally find good solutions. Genetic algorithms use a
population of points in the effort to find the optimal solu-
tion. Each individual in the population is a string of genes,
where each gene describes some feature of the solution.
Genetic algorithms mimic the processes of natural evolu-
tion, including reproduction and mutation. The most pow-
erful operator of a genetic algorithm is the crossover opera-

tor: the recombination of the genes of two parents to create
two offspring. This crossover allows the offspring to ac-
quire the good characteristics of different points in the
search space.

Most genetic algorithms perform the following steps,
stopping when a fixed number of offspring has been cre-
ated:

Step 0:
Step 1:
Step 2:

Form an initial population.

Evaluate the individuals in the population.

Select individuals to become parents with probabil-
ity based on their fitness.

For each pair of parents, perform a crossover to
form two offspring. Mutate each offspring with
some small probability.

Place the offspring into the population. Return to
Step 1.

Step 3:

Step 4:

Holland,'”), Davis,”®! and Goldberg!'® provide good
descriptions of genetic algorithms. Davis,®} Oliver, Smith,
and Holland,® Liepins and Hilliard,”!! Fox and McMa-
hon '} Gupta, Gupta, and Kumar,!'® and Storer, Wu, and
Vaccari®?! describe the use of genetic algorithms on travel-
ing salesman problems and scheduling problems. Other
work on genetic algorithms and scheduling problems are
reported in [4, 24, 31, 34, 35]. See Goldberg!"?! for addi-
tional references on genetic algorithm applications.

4.3. Genetic Algorithm for CFTS

Genetic algorithms are heuristic searches that use a popula-
tion of points in the effort to find the optimal solution. The
stronger members of the population survive, mate and
produce offspring that may undergo a mutation. These
offspring form a new generation. Genetic algorithms have
been used on sequencing problems before, although they
cannot use natural crossover techniques in searching the
solution space. The advantage of the problem space is that
the genetic algorithm can use standard techniques to create
offspring.

Our genetic algorithm searches the space of adjusted
deadlines. We use a binary coding for the adjusted dead-
lines and a single pass of the Minimum Waste algorithm as
the heuristic. For this genetic algorithm, we use many of
the ideas presented in Davis.”’!

In the problem space, each point is a vector of integers
that are deadlines used as input for one pass of the Mini-
mum Waste algorithm. We will use a binary representation
of the points in problem space. In the population of the
genetic algorithm, each individual is a string of bits. Each
successive six-bit substring represents a deadline for a
specific job. The integer decoded from this binary number
ranges from zero to 63 and linearly maps to a real number
in the range from zero to the maximum deadline in the
given problem data. This discretization reduces the prob-
lem space but still allows the deadlines to vary signifi-
cantly with respect to each other.

The adjusted deadlines are used as input to a single pass
of the Minimum Wage algorithm, which outputs a se-
quence of jobs. The algorithm uses the largest of the ad-

443

Solving a Class Scheduling Problem

justed deadlines as the initial makespan and schedules the
jobs accordingly, using the actual job processing and class
setup times where necessary but using the adjusted dead-
lines to determine when a job is eligible. If necessary, the
algorithm can start jobs before time zero.

Using the actual problem data and the sequence of jobs
output from one application of the Minimum Waste Algo-
rithm, we can create a schedule of jobs that starts at time
zero and has no inserted idle time. We evaluate the original
string of bits by computing the feasibility and the total
flowtime of this schedule.

Since we cannot guarantee that the algorithm will pro-
duce a schedule with no tardy jobs, we use a penalty
function to make undesirable those individuals in the pop-
ulation that yielded infeasible schedules (with respect to
the actual deadlines). This penalty function is F=3T?,
where T, = max{0,C, — D;}, Our objective function f is
defined as f = ZC, + rF.

In order to encourage solutions with good total flowtime
(regardless of feasibility) at the beginning of the search and
to encourage feasibility near the end of the search, we start
the search with the constant 7 small and increase it periodi-
cally.

The initial population includes one individual (the
dummy, or seed) that we create by dividing each actual
deadline by the maximum deadline, multiplying by 63,
rounding down to the nearest integer, and converting this
integer (which is in the range 0 to 63) to its binary represen-
tation. The remaining individuals in the initial population
are constructed by mutating the bits in the initial (dummy)
chromosome. The mutation rate is set at fifty percent (0.5).
Note that using an initial mutation rate of 0.5 is equivalent
to choosing a random chromosome from the entire search
space.

Let us illustrate this procedure using Example 1, the
problem we introduced earlier (see Table I for problem
data). Also, let us define [x] as the greatest integer less
than or equal to x.

Mapping the deadlines to the bit strings yields the
dummy, shown in Table IV. Let us create another member
on the initial population. If two bits, the fourth of the
fourth substring and the first of the last substring, are
flipped in the mutation, we have the point in problem
space shown in Table V. Performing one pass of the Mini-
mum Waste algorithm on the new deadlines (see Table VI)
yields the sequence [1 5 4 3 2], from which we create the
feasible schedule shown in Figure 5, with a makespan of 15
and a total flowtime of 46.

After some experimentation we decided to use a steady-
state genetic algorithm that created offspring by repeatedly
selecting from a set of four genetic operators: one-point

Table IV. Bit Representation of the Dummy

D, 3 16 14 10 18
[63 D, /18] 10 56 49 35 63
Bits 001010 111000 110001 100011 111111

Table V. A Point in the Problem Space
Bits 001010 111000 110001 100111 011111
Integer 10 56 49 39 31
D 2.85 16 14 11.14 8.85

]

crossover, uniform crossover, and two types of mutation.
Small mutation used a low probability (two percent per bit)
of flipping a bit in the string; large mutation used a higher
probability (fifty percent). The search used tournament
selection for selecting the parents necessary for the crossover
or mutation, and duplicate bit strings were not allowed in
the population. Tuning was performed in order to deter-
mine some good settings for various algorithm parameters.

These parameters included the population size, the mu-
tation rate, the operator fitness, and the rate of change of
the penalty coefficient 7. The rate of increase in the penalty
coefficient affected the solution quality slightly. The muta-
tion rate, population size, and relative probabilities of oper-
ator selection affected solution quality more significantly,
with a smaller mutation rate (two percent, as mentioned
earlier), smaller population sizes, and a higher fitness for
mutation yielding better solutions. These factors imply that
the search can easily find good neighborhoods (especially
since a point corresponding to the original problem data is
included in the initial population) but needs to spend time
hunting for a better solution. Thus, a search that incorpo-
rates some kind of local search at the end of the genetic
algorithm may be useful.

9. Empirical Testing
5.1. Problem Generation
In order to test the heuristics and the genetic algorithm
described above, it is necessary to create a testbed of
problems. We describe in this section how we can create
problems that have at least one feasible solution and prob-
lems where finding a feasible solution is more difficult.
The problems in the first problem set have 30 jobs in four
classes, with random processing times in the range [1,20]
and sequence-dependent class setups in the range [0, 5]. For
this set, we want to determine random deadlines in order
to insure that some feasible schedule did exist.

Table VI. Application of the Minimum
Waste Algorithm

Waste Schedule

Time Ji /2 I3 Ja Js J, G
16 13.15 0 2 4.86 715 I 16
14 11.15 0 2.86 5.15 I3 14
12 9.15 2 3.15 Is 10
7 415 0 Js 7

5 2.15 I 2.85

Copyright © 2001 All Rights Reserved

Herrmann and Lee

LS [hfse] %5 | %W T P h Th% |
0 2 3 4 6 9 1! 13 15
Agure 5. Schedule corresponding to new bit string.

We use the following procedure: after computing the
random class setup times, each job is given a random
processing time, and an initial completion time is com-
puted by scheduling it after all previously-constructed jobs.
This first-generated-first-served schedule yields a makespan
that becomes an upper bound for the deadlines, and each
job is given a deadline determined by sampling a random
variable uniformly distributed between the job completion
time (in this schedule) and the makespan, i.e. the interval
[C,, Cpuax]- Thus, the initial sequence is a feasible solution.

In order to determine the performance of the genetic
algorithm on minimizing the flowtime when feasible solu-
tions are harder to locate, a number of additional problem
sets are created. In addition to the problem set described
earlier, which includes problems that were known to have
a feasible solution, we generate 30-job and 50-job problems
with tighter deadlines. The 30-job problems have four job
classes and the 50-job problems ten job classes. Tighter
deadlines are achieved by extending the range of values
that a random deadline could take. Let us define a value k
that can range from zero to one. The deadline for], is taken
from the interval [kC,, C,,,], where the C, and C,,, are
from the original generated schedule. If k = 1, this plan is
the same as the original one, and the generated problem is
guaranteed to have a feasible schedule. If k=0, all of the
deadlines vary equally, and there may exist no feasible
schedule. As k decreases from one to zero, the problems
we generate have a higher probability of having fewer
feasible schedules. We generated problems with k = 0, 0.2,
and 1. Since the Multiple-Pass Minimum Waste Heuristic
cannot find feasible solutions for some of these problems,
we will see if the genetic algorithm can find solutions that
are feasible.

5.2. Results

In this section we discuss the results of our experiments
with the solution procedures on the generated problem
sets. Since the optimal solutions are not known and no
good lower bound can be determined, we measure the
performance of the solution procedures relative to each

other. Each procedure was run once on each of the prob-
lems in the problem sets. The procedures include the Multi-
ple-Pass Minimum Waste Heuristic and the problem space
genetic algorithm.

Since no algorithms for this problem have been previ-
ously introduced, we implemented for comparison pur-
poses a version of the heuristic that Ahn and Hyun!'! use
to reduce the total flowtime in unconstrained class schedul-
ing problems. They proposed an iterative heuristic that
starts with an initial feasible sequence where the jobs in
each class are in SPT order (since they are not concerned
with deadlines) and applies both a forward and backward
procedure to it, repeating the steps until no strict improve-
ment is found. Each of the forward and backward proce-
dures interchanges different subschedules where the sec-
ond subschedule consists of jobs from one class and the
first subschedule has no jobs from this class. If the inter-
change reduces the total flowtime, the subschedules are
switched; this maintains the class SPT property.

Our version of this algorithm, called the Modified Ahn
& Hyun heuristic, uses one pass of the Minimum Waste
algorithm to form the initial schedule. In addition, a poten-
tial swap of two subschedules is performed only if the
swap reduces the total flowtime and maintains deadline
feasibility.

The results (see Table VID) show that the genetic algo-
rithm can find solutions that are much better than those
found by the Multiple-Pass Minimum Waste Heuristic and
are slightly better than those that Modified Ahn & Hyun
heuristic produces. The genetic algorithm needs more time
to find good solutions on the larger problems, although
additional tuning may help improve the performance of the
search.

The searches for the 30-job problems were for 2000 itera-
tions using the following parameter settings: population
size of 10, all operator fitnesses equal, increase of 50 in r
every 10 individuals. The searches for the 50-job problems
were for 3000 iterations using the same population size, no
large mutations, and an increase of 50 in r every 50
individuals.

We observed that if the Multiple-Pass Minimum Waste
Heuristic is unable to generate a feasible solution, the
Modified Ahn & Hyun heuristic and the problem space
genetic algorithm cannot locate a feasible solution. Thus
our results are reported only for those problems where
feasible schedules were created.

Table VII. Total Flowtime Performance of Heuristics on Problems Where a Feasible Was Found
Performance® of Heuristics
Problem Set Problems Jobs k Genetic Algorithm Modified Ahn & Huun
Newprob4 10 30 1 0.8562 0.9130
Prob2a 4 30 0.2 0.9099 0.9346
Prob50z 10 50 1 0.8739 0.8755
Prob2c 8 50 0.2 0.8796 0.8914

?Performance is average ratio to solution found by the Multiple-Pass Minimum Waste Heuristic.

PN
FOPTYTIOTIC

451

Solving a Class Scheduling Problem

8. Conclusions and Future Directions

This paper has two contributions: it introduces an extended
heuristic for the dual criteria class scheduling problem that
we call CFTS, and it describes a problem space genetic
algorithm used to find good solutions. The problem is to
minimize the total flowtime subject to deadline constraints.
In this paper we present a multiple-pass heuristic for find-
ing good solutions and discuss problem space and the
genetic algorithm. Finally, we describe our experimental
results, in which we compared the genetic algorithm to
some heuristic approaches. From these results we make the
following conclusions:

The Multiple-Pass Minimum Waste heuristic performs
well at minimizing the total flowtime of CFTS. Though not
an exact procedure, it is usually able to find feasible,
high-quality solutions.

A genetic algorithm that searches a problem space of the
Minimum Waste algorithm for CFTIS can find solutions
with lower total flowtime. This genetic algorithm includes
a penalty function for infeasible points that increases the
cost of tardiness as the search progresses.

Acknowledgments

This material is based upon work supported under a National
Science Foundation Graduate Fellowship and work funded by
Harris Semiconductor and National Science Foundation Grant
DDM-9201627. We also wish to thank the referees and the area
editor, Darrell Whitley, whose constructive comments helped us
significantly improve the paper.

References

1. B.-H. AnN and J.-. HYuN, 1990. Single Facility Multi-Class Job
Scheduling, Computers and Operations Research 17:3, 265-272.

2. U. BaccHr and R.H. AHMADI, 1987. An Improved Lower Bound
for Minimizing Weighted Completion Times with Deadlines,
Operations Research 35, 311-313.

3. J. BRUNO and P. DOWNEY, 1978. Complexity of Task Sequencing
with Deadlines, Set-Up Times and Changeover Costs, SIAM
Journal of Computing 7:4, 393—404.

4. G. CLEVELAND and S. SMITH, 1989. Using Genetic Algorithms to
Schedule Flow Shop Releases, in Proceedings of the Third Inter-
national Conference on Genetic Algorithms, Morgan Kaufmann,
San Mateo, California.

5. E.G. CorrMaN, A. NozArl and M. YANNAKAKIS, 1989. Optimal
Scheduling or Products with Two Subassemblies on a Single
Machine, Operations Research 37:3, 426—436.

6. L. Davis, 1985. Job Ship Scheduling with Genetic Algorithms,
in Proceedings of an International Conference on Genetic Algo-
rithms and their Applications, J. Grefenstette (ed.), Lawrence
Erlbaum Associates, Hillsdale, N.J.

7. L. Davis (ed.), 1987. Genetic Algorithms and Simulated Annealing,
Pitman Publishing, London.

8. L. Davis (ed.), 1991. Handbook of Genetic Algorithms, Van Nos-
trand Reinhold, New York.

9. G. DoBsoN, U.S. KARMARKAR and J.L. RUMMEL, 1987. Batching

to Minimize Flow Times on One Machine, Management Science

33:6, 784-799.

G. DoBsoN, U.S. KARMARKAR and J.L. RUMMELL, 1989. Batching

to Minimize Flow Times on Parallel Heterogeneous Machines,

Management Science 35:5, 607-613.

B.R. Fox and M.B. MCMAHON, 1990. Genetic Operators for Se-

10.

11.

12.

13.

14.

15.

16.

17

18.

19.

20.

21.

22.

24.

25.

26.

27.

29.

30.

31.

32.

quencing Problems, Planning and Scheduling Group, McDonnell
Douglas Space Systems, Houston, Texas.

M.R. GAREY and D.S. JouNSON, 1979. Computers and Intractabil-
ity: a Guide to the Theory of NP-Completeness, Freeman, San
Francisco.

D.E. GOLDBERG, 1989. Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, Massachu-
setts.

J.N.D. GupTa, 1984. Optimal Schedules for Single Facility with
Classes, Computers and Operations Research 11, 409-413.

J.N.D. GurTta, 1988. Single Facility Scheduling with Multiple
Job Classes, European Journal of Operational Reserach 8, 42—45.
M.C. Gurta, Y.P. GurTa and A. KUMAR, 1993. Minimizing Flow
Time Variance in a Single Machine System Using Genetic
Algorithms, European Journal of Operational Research 70:3, 289.
J.W. HERRMANN, C.-Y. LEE and J.L. SNowDON, 1993. A Classifi-
cation of Static Scheduling Problems, in Complexity in Numeri-
cal Optimization, P.M. Pardalos (ed.), World Scientific, River
Edge, N.J., pp. 203-253.

J.C. Ho, 1992. Minimizing the Number of Tardy Jobs with Two
Jobs Classes, Division of Business, Northeast Missouri State
University.

J.H. HOLLAND, 1975. Adaptation in Natural and Artificial Systems,
University of Michigan Press.

J.K. LEnsTRA, A.H.G. RinnoOY KAN and P. BRUCKER, 1977.
Complexity of Machine Scheduling Problems, Annals of Dis-
crete Mathematics 1, 343-362.

G.E. LieriNs and M.R. HILLIARD, 1989. Genetic Algorithms:
Foundations and Applications, Annals of Operations Research
21, 31-58.

AJ. MasoN and E.J. ANDERSON, 1991. Mmimizing Flow Time
on a Single Machine with Job Classes and Setup Times, Naval
Research Logistics 38, 333-350.

. C.L. MonMa and C.N. Ports, 1989. On the Complexity of

Scheduling With Batch Setup Times, Operations Research 37:5,
798-804.

R. NakaNoO and T. YAMADA, 1991. Conventional Genetic Algo-
rithms for Job Shop Problems, in Proceedings of the Fourth
International Conference on Genetic Algorithms, Morgan Kauf-
mann Publishers, San Mateo, California.

IM. OLiver, D.J. SMiTH and J.R.C. HOLLAND, 1987. A Study of
Perturbation Crossover Operators on the Traveling Salesman
Problem, in Genetic Algorithms and their Applications: Proceedings
of the Second International Conference on Genetic Algorithms, J.
Grefenstette (ed.), Erlbaum Associates, Hillsdale, N.J.

M.E. POSNER, 1985. Minimizing Weighted Completion Times
with Deadlines, Operations Research 33, 562-574.

C.N. Ports, 1991. Scheduling Two Job Classes on a Single
Machine, Computers and Operations Research 18:5, 411-415.

. C.N. Porrs and L.N. VAN WASSENHOVE, 1983. An Algorithm for

Single Machine Sequencing with Deadlines to Minimize Total
Weighted Completion Time, European Journal of Operational
Research 12, 379-387.

V.K. SAHNEY, 1972. Single-Server, Two-Machine Sequencing
with Switching Time, Operations Research 20:1, 24-36.

W.B. SMITH, 1956. Various Optimizers for Single-Stage Produc-
tion, Naval Research Logistics Quarterly 3, 59—66.

T. STARKWEATHER, S. MCDANIELS, K. MATHIAS, C. WHITLEY and
D. WHITLEY, 1991. A Comparison of Genetic Sequencing Opera-
tors, in Proceedings of the Fourth International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo,
California.

R.H. STORER, S.Y.D. WU and R. VACCARI, 1990. Local Search in
Problem and Heuristic Space for Job Shop Scheduling, Depart-
ment of Industrial Engineering, Lehigh University.

Copyright © 2001 All Rights Reserved

Herrmann and Lee

33. RH. STORER, S.Y.D. WU and R. VACCARI, 1992. New Search 35. D. WHITLEY, T. STARKWEATHER, and D. SHANER, 1991. The Trav-

Spaces for Sequencing Problems with Application to Job Shop eling Salesman and Sequence Scheduling: Quality Solutions
Scheduling, Management Science 38:10, 1495-1509. Using Genetic Edge Optimization, in Handbook of Genetic Algo-
34. G. SYsweDA, 1991. Schedule Optimization Using Genetic Algo- rithms, L. Davis (ed.), Van Nostrand Reinhold, New York.
rithms, in Handbook of Genetic Algorithms, L. Davis (ed.), Van 36. D.L. WooDRUFF and M.L. SPEARMAN, 1992. Sequencing and
Nostrand Reinhold, New York. Batching for Two Classes of Jobs with Deadlines and Setup

Times, Production and Operations Management 1:1, 87-102.

—_—reeeee o SV G RE-©- 200+ Al Righis-Reserred
ved

