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De® ning specialized design similarity measures

JEFFREY W. HERRMANN{*, SUNDAR BALASUBRAMANIAN{
and GURDIP SINGH{

Similar product designs resemble each other and have similar attributes and
characteristics. When examining a product design to create its process plan,
design its ® xture, or estimate its manufacturing cost, manufacturing engineers
often identify one or more similar products that the factory has manufactured
in the past. They may do this from memory, from a ® le cabinet, or from a
database (in a product data management system). Then, they retrieve the process
plan (or ® xture or cost estimate) for the similar product and modify it for the new
product. Manufacturing and process planning experts use a complex set of rules,
guidelines, and other knowledge to determine how similar two products are.
Computer-aided process planning tools, however, generally use simpler, less
sophisticated procedures for determining similarity. These traditional procedures
may be inappropriate for speci® c settings. This paper presents an approach for
developing function-speci® c design similarity measures. Such a measure explicitly
exploits the speci® c need for similar products and thus improves variant
approaches for process planning, ® xture planning, and manufacturability evalua-
tion. The approach is applied to a speci® c ® xture planning domain.

1. Introduction

Reusing existing solutions is an e� cient approach to many manufacturing tasks,
including process planning, ® xture planning, and manufacturability evaluation.
Given a new product design and a task to perform, many manufacturing engineers
start by identifying one or more similar products. They may search their memory, ® le
cabinets, or databases (in a product data management system). After locating a
similar product, they can use information about that product to create information
about the new product or predict the new product’ s performance. For instance,
variant process planning modi® es a similar product’ s process plan to create the
new product’s process plan. Variant ® xture planning modi® es a similar product’s
® xture to create the new product’s ® xture. Variant manufacturability evaluation uses
a similar product’ s manufacturing cost or time to predict the new product’ s manu-
facturing cost and time.

Engineers have, in the past, been successful by trusting their experience and
intelligence when locating similar products. The variety of products and manufactur-
ing processes continues to grow, however. Thus, manufacturing companies need
systematic procedures so that fewer mistakes occur, decisions conform to standard
practice, and new engineers can perform the job e� ciently and e� ectively. In addi-
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tion, systematic procedures can be automated, reducing the time that engineers
spend doing routine tasks.

A systematic method for retrieving a similar product requires some way to
classify or organize the set of existing products. We will use the term design similarity
measure to describe a function or procedure that calculates or estimates the similarity
of two product designs. Researchers and software developers have constructed some
approaches for classifying product designs according to their similarity, and these
have been used in some particular domains as the basis for computer-aided variant
process planning. Section 2.2 will discuss these in more detail.

Computer-aided process planning tools, however, generally use simple
procedures for determining similarity. These traditional procedures may be inap-
propriate for speci® c settings. Moreover, no previous work has presented a general
approach for de® ning a specialized design similarity measure. This de® ciency
hampers engineers and researchers who attempt to develop variant procedures for
other problem domains. If one knew how to de® ne the appropriate design similarity
measure, one could deploy a systematic procedure for locating a similar product to
help complete a manufacturing task (like process planning, ® xture planning, or
manufacturability evaluation) more e� ciently.

Consider the following analogy. A commuter is shopping for a new car. The
commuter is considering a particular new car and wants to estimate the car’ s actual
fuel e� ciency. The commuter knows a lot about the new car and knows a lot about
other existing cars and their actual fuel e� ciency in the commuter’s community. The
commuter believes that the new car’s fuel e� ciency will approach the fuel e� ciency
of similar cars. Speci® cally, the car whose weight most closely approaches the new
car’s weight will provide the best estimate for the new car’s fuel e� ciency. The
commuter ignores the car’s colour and the stereo (which do not impact the fuel
e� ciency) and instead considers the car’s weight (which does).

The commuter’s car similarity measure is a function of the two car’s weights. As
the weights approach each other, the cars’ similarity increases. The commuter uses
this measure to identify the most similar car and estimate the new car’s fuel
e� ciency. Of course, the commuter might ® nd a better estimate by also considering
the car’s engine displacement and whether or not it has air conditioning, since those
attributes also a� ect fuel e� ciency. Also, note that the similarity measure does not
itself estimate the fuel e� ciency; instead, it helps identify cars that may have similar
fuel e� ciency.

The manufacturing engineer’s problem can be formulated as follows: The deci-
sion-maker has a set W of product designs and relevant information about those
product designs. Let (D i, L i ) be a product design and the relevant information (for
example, the process plan). The decision-maker has a new product design D0 and
needs to create some information L 0 about that product design. The decision-maker
wants to identify a product design in W and use the associated information to create
L 0. One can say that L 0 solves the decision-maker’s problem.

To do this, the decision-maker needs a design similarity measure S…D0 ;D j† that
quanti ® es how well the information L j can be used to create some information L 0
about D0. The decision-maker can then search W for the existing product design in
W that is most similar to D0. We will assume that S…D0 ;D j† ranges from zero to one.
If S…D0 ;D j† is close to 0, then L j is not very useful. If S…D0 ;D j† is close to 1, then L j
is very useful. (For example, perhaps the process plan L j for product D j requires only
minor modi® cations to be a feasible process plan for D0. )
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The proper design similarity measure is important since it can help the decision-
maker construct a superior solution quickly. An improper design similarity measure
will lead the decision-maker to an inferior solution or will cause delays as the
decision-maker searches W exhaustively to ® nd a better source of information.

An alternative approach would determine directly how well the information L j
can be used for D0. In some cases, this may be impossible or computationally
expensive. For example, if L j is the manufacturing cost of D j , then it is di� cult to
determine independently whether L j is an accurate estimate for the manufacturing
cost of D0. If L j is a ® xture for D j , then it will require signi® cant computational e� ort
to determine directly how well L j would hold D0. However, a design similarity
measure, in general, will be feasible and will require less computation.

If the decision-maker needs to create this type of information frequently, then the
decision-maker may ® nd it worthwhile to invest some time creating a specialized
design similarity measure that helps solve this type of problem. For instance, a
manufacturing engineer may decide to create a design similarity measure that
identi® es product designs that will have similar manufacturing costs or times. This
specialized design similarity measure will be di� erent from a measure used to locate a
product design that has a similar ® xture or process plan.

There are many ways to de® ne a specialized design similarity measure. One can
try to capture the expert knowledge that an experienced engineer has and to store the
rules and information in a knowledge base to develop an expert system that can
calculate S…D0 ;D j†. Herrmann and Singh (1997) describe an approach that
structures the expert’s knowledge and constructs a plan-based design similarity
measure for variant process planning.

A second approach is to exploit the knowledge that exists in the set W . This
paper discusses such an approach to de® ne a specialized design similarity measure.
This approach uses an arti® cial neural network. The product designs and informa-
tion in W are used to train the neural network, which learns the specialized design
similarity measure. We present an application of this approach to the domain of
variant ® xture planning. However, the approach could be used for variant process
planning or variant manufacturability evaluation.

The remainder of this paper describes the approach in detail. Section 2 reviews
related work on process planning, design similarity measures, ® xture planning, and
neural networks. Section 3 describes the approach for de® ning a specialized design
similarity approach. Section 4 presents the application of this approach to variant
® xture planning. Section 5 concludes the paper.

2. Related work

This section reviews previous work on process planning, design similarity meas-
ures, ® xture planning, and arti® cial neural networks.

2.1. Process planning
A process plan describes the steps necessary to manufacture a product. It

speci® es the type and sequence of the manufacturing operations that transform
the components and raw materials into a set of parts. Some form of the process
plan is used by designers, production planners, and manufacturing operators. A
process plan may specify, for each step, the particular machine that will perform
the step and the relevant process parameters that regulate the process. For instance,
the process plan may specify the speed required to perform a drilling operation.

3605De® ning specialized design similarity measures



The earliest examples of process plans are operations sheets for sewing
machine manufacture. In the nineteenth century, Brown & Sharpe, a Rhode
Island manufacturing company, used these sheets to list the operations and
identify, for each operation, the necessary tools, jigs, ® xtures and gauges
(Hounshell, 1984) .

When done manually, process planning is a subjective and time-consuming
procedure, and it requires extensive manufacturing knowledge. An experienced
engineer or machinist must examine a part drawing and construct a process plan.
The process planner must know or be able to ® nd information about the
manufacturing capabilities, tooling, materials, costs, and machine availability. In
addition, the process planner must carefully document the plan using standard
notation and forms.

Computer-aided process planning (CAPP) software systems automate many
functions, which reduces the chance of error, and the process planner can work
more quickly. Variant process planning systems have successfully exploited the
observation that similar designs have similar process plans. Thus, the most similar
design will have the most useful plan. (A useful plan is one that requires few
changes. ) The CAPP software searches a set of existing designs, uses a design
similarity measure to compare each existing design and the new design, identi® es
the most similar existing design, and retrieves the corresponding process plan. (Some
variant process planners ® nd the most similar product family and retrieve that
family’s standard plan.) Then, the process planner modi® es the process plan, chang-
ing the details so that the plan is appropriate for the new design. The new plan is
therefore a variant of the old plan.

The earliest CAPP software systems employed the variant process planning tech-
nique. Several variant systems are commercially available today, and they currently
support almost all practical implementations of CAPP. For more information, see,
for example, Chang and Wysk (1985), Alting and Zhang (1989), Bedworth et al.
(1991), and Halevi and Weill (1995). A typical variant process planning approach
involves the following three steps.

(1) The process engineer uses a group technology (GT) coding scheme to map a
new product design D0 into an alphanumeric code. As discussed below, GT
codes are a popular design classi® cation scheme.

(2) This code is then used as an index into a database to retrieve a process plan
P for the design D most similar to D0 (or for the family F that includes D0 or
is most similar to D0 ).

(3) The planner then modi® es the process plan P manually to produce a plan P0
for the design D0.

Variant process planning is a popular technique and several available CAPP systems
have implemented the approach. It has many advantages.

(i) Because the planner only modi® es the retrieved plan, variant process plan-
ning reduces the total time that the planner requires to generate a complete
process plan for the new design.

(ii) The process plan uses existing company manufacturing data and expertise
and follows company standards.

(iii) The variant approach can be applied to any type of manufacturing, and the
resulting plan can include all types of processes.
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Truly e� ective variant process planning requires the ability to retrieve a process plan
that is useful for creating the new plan. Since the retrieved process plan corresponds
to the most similar design (or family) that the search ® nds, the design similarity
measure clearly a� ects the variant process planning approach. However, existing
design similarity measures do not consider explicitly the process plan attributes.
This may lead to instances when similar’ designs have process plans that are less
useful.

Most variant approaches use product (or part) families to simplify the procedure.
A new product design must be classi® ed into the most appropriate product family.
The next section discusses di� erent approaches for forming the families and classify-
ing a product design into a family.

2.2. Design similarity measures
This section reviews the common design similarity measures that group tech-

nology and variant process planning use. Other approaches include geometric simi-
larity and neural network classi® ers.

Group Technology. Mitrofanov (1966) ® rst formally described group technology
(GT) as a method that improves manufacturing e� ciency by classifying similar
products into families. Two formal methods of classifying designs for group
technology are Production Flow Analysis (PFA), described by Burbidge (1989),
and parts coding and classi® cation analysis (PCA). PFA uses routing information
to classify products into families, while PCA uses design information to derive GT
codes.

A GT code is a sequence of numbers. Each position in the code represents some
product design attribute: thickness or the presence of holes, for example. Each
possible value represents a set of values for that attribute. Di� erent GT coding
schemes have di� erent attributes. Given a product design and a speci® c coding
scheme, the coding rules calculate what each attribute’s value should be, which
yields a GT code for that product. Researchers have developed many GT coding
schemes. Typical schemes include DCLASS (Computer Aided Manufacturing
Laboratory, 1979), MICLASS (Houtzeel and Schilperoort, 1976) , and OPITZ
(Opitz, 1970) . Also see, for example, Chang and Wysk (1985) and Bedworth et al.
(1991). GT codes have many applications, including cellular manufacturing system
design, materials management, tool management, process planning, and product
standardization (Snead, 1989) . Candadai et al. (1995, 1996) describe an application
for manufacturability evaluation and partner selection.

The PFA approach examines the product routings and then groups those
products that have similar routings. Usually, one can use clustering algorithms
such as the rank order cluster algorithm (King, 1980) or mathematical formulations
(Kusiak, 1987) to identify similar routings and classify products into families.

Variant process planning requires some way to represent the products that each
family contains. If each product has a code, the part family matrix (Chang and
Wysk, 1985) describes, for each GT code position, all possible values that members
of that family have. Thus, a new product belongs to a particular family if the GT
code for the new design has, in each position, a value that exists in that family’s part
family matrix. That family’s standard process plan becomes the new product’s
process plan.
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PFA uses a rational approach to form families whose products have similar
routings. The subsequent search uses a GT code to classify a new product and
then asserts that the GT code similarity implies that the new product should have
a similar process plan. However, the GT code may not correspond to the process
plan. Although the GT code captures some information that impacts manufacturing,
the code does not explicitly describe the process plan. Thus, GT codes may be
convenient for classi® cation, but their use in this approach is inconsistent.

The PCA approach uses the GT codes to classify products into families. O� odile
(1991) describes one such approach. The approach uses a similarity measure to
evaluate each pair of products and calculate their similarity. This measure uses
each product’s GT code and averages the code digits’ similarity. A single linkage
clustering algorithm then groups the products into families at di� erent similarity
thresholds. Each family has a part family matrix and a standard process plan. As
before, a new product belongs to a particular family if the GT code for the new
product has, in each position, a value that exists in that family’s part family matrix.
That family’s standard process plan becomes the new product’s process plan.
Although O� odile’s approach simply averages the absolute digit di� erences, Iyer
and Nagi (1994, 1997) describe a more ¯ exible GT code-based search.

The PCA design classi® cation approach is consistent because the search uses the
same criteria that the part family grouping does. Again, however, a product’ s GT
code may not correspond to its process plan. It is not clear that the family’s standard
process plan would be a useful process plan for the new product. Thus, this may be
an inappropriate variant process planning approach.

Geometric Approaches. Many modern CAD/CAM systems use constructive or
boundary models to represent solids. Thus, one can classify products by using the
geometry that the CAD models represent. Elinson et al. (1997) describe such
approaches in detail.

Many solid models use Constructive Solid Geometry (CSG) trees as a basic
representational scheme. Using CSG trees to classify products seems natural because
the component volumes may be the volumes that machining operations remove.
However, the approach has two drawbacks. First, a product may have more than
one CSG representation. Second, although similar, the CSG primitives do not
always correspond to the manufacturing features. When they do not, the CSG
tree does not describe the information relevant to process planning.

Sun et al. (1995) have described a similarity measure for solids. This measure
evaluates properties of their boundary representations. This is an interesting, new
measure of relaxed’ geometric similarity. However, it has several di� culties that limit
its use as a classi® cation scheme for manufacturing. First, the similarity measure can
compare only polyhedral objects. Thus, the approach must facet (approximate with
planes) a solid that has cylindrical or sculpted faces. It is unclear how this
approximation will a� ect the design similarity measure. The second di� culty is
that the current measure addresses no manufacturing considerations such as
approachability, operation interference, or ® xturing. It is unclear if the design
similarity measure can include these considerations .

Neural networks. One promising approach (Leung et al. 1994) exploits the strengths
of the Arti® cial Neural Network (ANN) technique to associate a product’s attributes
with its process plan attributes. This approach does not use an explicit design simi-
larity measure but implicitly maps the product attributes to the associated process
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plan attributes. Thus, this approach is more like a generative method. However, the
resulting process planning systems have yielded inconsistent results since the search’s
success depends upon the ANN technique and the sample data used to train the
network.

Other design classi® cation approaches use neural networks to solve the form
recognition problem (Wu and Jen 1996) . However, such approaches resemble the
geometric approaches and share the same drawbacks.

Expert system . Herrmann and Singh (1997) describe a three-step approach for de® n-
ing a plan-based design similarity measure using expert knowledge about the process
planning domain. First, the expert de® nes a process plan similarity measure that is a
function of selected process plan attributes. For instance, the relevant attributes
might be the presence of speci® c manufacturing operations, and the similarity
measure might describe how many manufacturing processes the two process plans
share. In the second step, the expert selects product design attributes. Then, for each
process plan attribute in the process plan similarity measure, the expert de® nes a
mapping function that describes the correlation between the product design
attributes and the process plan attribute. The third step constructs the design simi-
larity measure by substituting the mapping functions into the process plan similarity
measure.

2.3. Fixture planning
This section reviews some of the previous research into ® xture planning.
In machining and other types of operations, an important part of process plan-

ning is ® xture planning: determining the ® xture that holds, locates, and supports a
workpiece in a particular set-up and provides a means to reference and align the
cutting tool to the workpiece. The proper location of the workpiece is essential to
guarantee accuracy and repeatability of the machining process (Ho� man 1984) .

Fixture planning is an important issue in small-batch manufacturing, which
requires the ¯ exibility of modular ® xtures. While many areas have been explored
to improve the cost-e� ectiveness of a manufacturing activity, none have an impact
on productivity as signi® cant as workholding practice (Ho� man 1987) . Like process
planning, identifying a good ® xture for a given operation is a di� cult task. Fixture
planning is di� cult because there are many di� erent types of ® xtures and ® xture
elements, and the ® xture has to satisfy many constraints on stability, location,
restraint, accessibility, and cost.

Process planning and ® xture planning are two problems that have been addressed
separately, but they have a signi® cant e� ect on each other. Many researchers have
attacked the problem of automatic ® xture design and the integration of ® xture
planning and process planning. Previous research has focused on mathematical sol-
utions for locating and holding a part and on expert systems and computer-aided
® xture-planning routines. See Darvishi and Gill (1990), Trappey and Liu (1990),
Chang (1992), Kumar et al. (1992), Fuh et al. (1993), Hargrove and Kusiak
(1994), Yue and Murray (1994), and Chou et al. (1994) for some approaches and
additional references on automatic ® xture design.

2.4. Arti® cial neural networks
Arti® cial neural networks are computer simulations of biological neurons,

composed of nonlinear computational elements operating in parallel. Neural net-
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works consist of nodes (neurons) and synaptic connections that connect these nodes.
Each connection is assigned a relative weight, also called connection strength, or
synaptic strength. The output at each node depends on the threshold (bias or o� set)
speci® ed and a transfer (activation) function. For a complete introduction, see
Muller and Reinhardt (1990). See Lippmann (1987) for a taxonomy of neural
network structures.

Some typical applications of neural networks involve pattern mapping, pattern
completion and pattern classi® cation. Neural networks attract interest because these
models are capable of performing complex tasks that are impossible with sequential
models. Neural networks are particularly useful in problems where the logical
structure or the inputoutput relation is poorly understood. Neural networks are
capable of learning and generalizing from examples in the absence of explicit rules
or an analytical structure.

In a feed-forward neural network, signals ¯ ow from the input layer through the
intermediate hidden layers to the output layer. Neurons in the same layer do not
communicate with each other. Multi-layered networks have input, output, and inner
(or hidden) neuron layers that intervene between the input and output layers. The
number of hidden layers and number of nodes in each hidden layer depends on the
complexity of the problem. Increasing the number of hidden layers increases the
network’s complexity and may or may not enhance the network’s performance. In
most cases, a hidden layer that has more nodes yields better network performance
and longer training time. Based on previous experience, one or two hidden layers
provide a better performance while not requiring extensive training time (Huang et
al. 1999).

The initial neural network has a random set of weights. The learning process
adjusts the connection weights to improve the neural network’s performance on a
prede® ned measure. Supervised learning presents a set of training input vectors and
their associated output vectors. The learning algorithm adjusts the network’s weights
based on the di� erence between the desired output and neural network’ s actual
output. Learning is a search, through a multi-dimensional space of weights, that
gradually optimizes the network performance (Hassoun 1995). Back-propagation is
the most extensively used training method. The back-propagation algorithm is an
iterative gradient method-based algorithm developed to introduce synaptic cor-
rections (weight adjustments) by minimizing the sum of squared error (objective
function).

3. Approach

This section describes an approach for creating a specialized design similarity
measure. This approach uses an arti® cial neural network. The existing designs and
information are used to train the neural network, which learns the specialized design
similarity measure. We will present an application of this approach to the domain of
variant ® xture planning. However, the approach is also appropriate for variant
process planning and variant manufacturability evaluation. De® ning a specialized
design similarity measure requires some e� ort. Once done, it yields a more appro-
priate measure that is quick and easy to use. The key is to use the knowledge that
exists in W, the set of existing product designs and information. The approach
proceeds as follows.
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Step 1. De® ne a function F…D i ;L i ;D j ;L j† that quanti® es whether the information L j
is appropriate for product design D i. The function should range from 0 to 1,
with F ˆ 0 signalling that L j is completely inappropriate for D i , and F ˆ 1
signalling that L j is perfect for Di . F…D i ;L i ;D i ;L i† should equal 1. Note that
F…D i ;L i ;D j ;L j† does not necessarily equal F…D j ;L j ;D i ;L i†.

For example, if L j is the process plan for D j , F might represent the frac-
tion of operations in L j that are needed for D i and in L i.

Step 2. For all pairs i, j in W £ W , calculate Uij ˆ F…D i ;L i ;D j ;L j†. (Note Uii ˆ 1.)
Create a set X ˆ f…D i ;D j ;Uij† : for all i, j in W £ W g.

Step 3. Construct a neural network that has one output node. Its input nodes cor-
respond to the key design attributes of two designs. Initialize the weights
with randomly selected values.

Step 4. Partition X into two sets: a training set and a testing set. Use these sets to
train the neural network. The input signals to the neural network are the
attributes of the designs D i and D j , and the desired output is Uij . The
resulting neural network is the specialized design similarity measure
S…D i ;D j†.

4. Application to variant ® xture planning

One application for a specialized design similarity measure is our work on hybrid
process planning.

4.1. Hybrid process planning
Variant ® xture planning is part of a hybrid process planning approach that we

have developed. The hybrid process planning approach extends the generative
approach that Gupta et al. (1994) describe. After using that approach for process
selection, it employs a variant procedure to select ® xtures, which completes the
process plan. For more details, see Balasubramanian et al. (1998).

In a machining operation, a cutting tool sweeps along a trajectory, and the
motion of the tool relative to the current workpiece removes material. A machining
feature is the volume resulting from a machining operation. A machining feature
corresponds to a single machining operation made on one machine set-up. Each
machining feature has a single approach direction (or orientation) for the tool.

Features are parametrized solids that correspond to various types of machining
operations on a three-axis machining centre : side-milling, face-milling, end-milling
and drilling. A design is represented as a collection of machining features. Given this
feature-based representation, there may be several alternative representations of the
design as di� erent collections of machinable features, corresponding to di� erent
ways to machine the part. The approach proceeds as follows.

Repeat the following steps until every promising feature-based model (FBM) has
been examined.

. Generate a promising FBM from the feature set. A FBM is a set of machining
features that contains no redundant features and is su� cient to create the part.
An FBM is unpromising if it is not expected to result in any operation plans
better than the ones that have already been examined.

. Do the following steps repeatedly, until every promising operation plan result-
ing from the particular FBM has been examined.
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° Generate a promising operation plan for the FBM. This operation
plan represents a partially ordered set of machining operations. We
consider an operation plan to be unpromising if it violates any
common machining practices.

° Estimate the achievable machining accuracy of the operation plan. If
the operation plan cannot produce the required design tolerances and
surface ® nishes, then discard it. Otherwise, estimate the production
time and cost associated with the operation plan.

° For each set-up in the operation plan, design a ® xture in the following
way. Search a database of existing designs, process plans, and ® xtures,
for ® xtures that could be used for the new design. Modify the
retrieved ® xture as necessary and verify its feasibility.

. If no promising operation plans were found, then exit with failure. Otherwise
exit with success, returning the operation plan that represents the best trade-o�
among quality, cost and time.

4.2. V ariant ® xture planning
This section describes the variant ® xture planning step in the hybrid process

planning approach described above. The goal is to retrieve, for a new product
design, a useful ® xture from a given set (or database) of existing designs and their
® xtures. Thus, the variant approach exploits this existing knowledge. However, since
calculating each ® xture’s feasibility and then determining the necessary modi® cations
for infeasible ® xtures would require too much e� ort, the approach searches quickly
for the most promising ® xtures. As explained below, the proposed approach uses a
design similarity measure to ® nd existing designs that are likely to have useful
® xtures. Then, it modi® es the retrieved ® xtures as necessary and identi® es the best
one for the new design.

In order to demonstrate our approach, we have studied a particular class of
products and modular components. One face of the part rests on the supporting
plane (a baseplate) and the ® xture elements constrain all motion of the part in the
supporting plane. Thus, only the two-dimensional projection of any given design
onto the supporting plane is needed for ® xture planning. Only polygonal shapes are
considered. In this setting, a ® xture is a set of three locators (pins) and one clamp,
which provides form closure. Because generative ® xture planning approaches (Brost
and Goldberg 1996, Zhuang and Goldberg 1996) are available, this domain is a
convenient environment for testing our approach. Future work will extend the
variant ® xture planning approach to a broader class of products and ® xtures.

For a new product design, a ® xture’ s usefulness is de® ned as its ability to provide
form closure and its maximum contact reaction force under a unit torque. The
reciprocal of this reaction force is the torque resistance metric. If the maximum
contact reaction force is smaller, the metric is larger. Large contact reaction forces
are undesirable since they may deform the part. Moreover, in the presence of large
machining forces, large contact reaction forces can make large clamping forces
necessary. Unfortunately, because calculating this measure requires some e� ort,
checking each existing ® xture against a new design is impractical if the database is
large.

The following steps describe the approach concisely. More details follow. Let D0
denote the new design. W is the set of existing designs and ® xtures.
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Step 0. ¡ ˆ fg. ¡ will be the set of candidate ® xtures.
Step 1. For each D j in W , calculate S…D0 ;D j†. For the product designs D j that

maximize S…D0 ;D j†, add L j (the ® xture for D j ) to ¡.
Step 2. For each L j in ¡ :

Step 2a. Determine all feasible con® gurations of D0 in the locator triplet of
L j .

Step 2b. For each feasible con® guration, ® nd the clamp positions that
achieve form closure.

Step 2c. For each feasible clamp position (and con® guration) C, evaluate
the torque resistance metric r…C ;D0†.

Step 2d. Let t…D0 ;L j† ˆ max r…C ;D0†.
Step 3. Select the ® xture L j in ¡ that maximizes t…D0 ;L j†. The design similarity

measure S…D0 ;D j† re¯ ects ® xture usefulness and was developed using the
neural network approach described in Section 3.

4.3. De® ning the design similarity measure
This section presents the specialized design similarity measure constructed for

this variant ® xture planning application. To do this, we followed the steps described
in Section 3.

Set W contains 27 two-dimensional product designs and the ® xture for each. We
used available generative ® xture planning techniques to create each product’s ® xture.
The existing ® xtures provide the least maximum contact reaction force for an applied
unit torque (clockwise or counter-clockwise) . However, other metrics, such as force
resistance or force and torque resistance, could be considered.

Step 1. We de® ned the function F…D i ;L i ;D j ;L j† as the ratio of the torque resistance
metric when ® xture L j is used for product design D i to the torque resistance
metric when ® xture L i is used for product design D i. Since L i is the best
® xture for D i and has the maximum torque resistance metric, this ratio is in
the range [0, 1].

Step 2. We calculated Uij ˆ F…D i ;L i ;D j ;L j† for all 729 (272 ) pairs of product
designs and created set X.

Step 3. We constructed a neural network with seven input nodes, one hidden layer
with seven nodes, and one output node. Three input nodes correspond to the
product design attributes of D i , three input nodes correspond to the product
design attributes of D j , and the seventh is a bias node. Below we describe the
neural network in more detail.

Step 4. We partitioned X by randomly selecting 546 pairs for the training set. The
remaining 183 pairs formed the testing set. Using the back propagation
algorithm, we trained the neural network. More details are given below.
The resulting neural network formed our specialized design similarity
measure S…D i ;D j†.

The neural network structure. We used a feed-forward network with sigmoid
activation functions for hidden and output layers. Learning is by the Least Mean
Square-based Back Propagation Algorithm.

In this ® xture planning domain, the product design attributes of interest were the
Maximum Inter-vertex Distance (MID), the Maximum Vertex-Edge Distance
(MVED), and the Total Enclosed Area (TEA). All of these are functions of the
two-dimensional projection of the product design. The MID is the maximum dis-
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tance between any pair of vertices in the polygon. The TEA is the area enclosed by
the polygon. The MVED is the maximum distance between a vertex and a line
containing an edge of the polygon.

In many cases, pre-processing the variables is one of the most signi® cant factors
in determining the performance of the neural network model (Bishop 1995) . It is
often necessary to transform the input data into some new representation before
presenting them to the network. In this application, we standardized the input
variables by calculating, for the product designs in W , the mean and standard
deviation of each product design attribute: MID, MVED and TEA. For training
and testing purposes, we standardized each value by subtracting the appropriate
mean and dividing by the standard deviation. Thus, in the training and testing
sets, each attribute’s mean equals zero and its standard deviation equals one.

Training and testing. A training cycle proceeds as follows. Present the ® rst training
example to the neural network and evaluate the actual output. Use the back-propa-
gation algorithm to adjust the weights. Repeat for the remaining examples in the
training set. Then, present the ® rst testing example to the neural network and eval-
uate the actual output. Record the absolute value of the di� erence between the actual
output and the desired output. Repeat for the remaining examples in the testing set
and then average. This yields the Mean Absolute Deviation (MAD).

To train the neural network, we began by randomly initializing the weights in the
neural network. We then performed training cycles until the MAD stopped improv-
ing.

As mentioned earlier, there is no methodology to select the number of hidden
layers, number of nodes in each hidden layer, connectivity, or learning algorithm.
Thus, we constructed di� erent networks to ® nd a superior con® guration. We varied
the number of hidden layers (one or two), the number of nodes in each hidden layer
(seven or thirteen), and the learning rate, which a� ects the weight adjustment. We
performed Steps 3 and 4 for each neural network design. The best network design
had one hidden layer, seven nodes, and a learning rate of 0.09. In all designs, we used
a momentum factor of 0.9. The resulting MAD was 0.206 576.

4.4. Results
We compared the specialized design similarity measure S…D i ;D j† to design

similarity measures P…D i ;D j†, Q…D i ;D j† and R…D i ;D j†, which were based on the
individual attributes MID, TEA and MVED (as de® ned in Appendix A).

For every pair of designs …D i ;D j† in W £ W , we calculated
Uij ˆ F…D i ;L i ;D j ;L j†, the relative usefulness of ® xture L j for design D i. We also
calculated the specialized design similarity measure S…D i ;D j† for every pair of
designs. Using standard statistical techniques we computed the correlation coe� -
cient for the pairs …Uij ;S…D i ;Dj††. Similarly, we computed the correlation coe� cient
for the pairs …Uij ;P…D i ;Dj††, the correlation coe� cient for the pairs …Uij ;Q…D i ;D j††,
and the correlation coe� cient for the pairs …Uij ;R…D i ;D j††. Table 1 presents these
results. The largest correlation coe� cient corresponds to the specialized design
similarity measure S…D i ;D j†, implying that this measure predicts ® xture usefulness
better than the simple design similarity measures.

We then examined how well the di� erent similarity measures performed when
used to select existing ® xtures for new product designs. We created ten new product
designs not in the set of existing product designs. For each one of these, we used the
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specialized design similarity measure S…D i ;D j† to ® nd the existing product design
most similar to the new one and measured the usefulness of that existing product’s
® xture for the new product design. Table 2 displays the results. Similarly, we used
each of the three simple design similarity measures P…D i ;D j†, Q…D i ;D j† and
R…D i ;D j† to identify a similar existing product design and evaluated those ® xtures
(the best available ® xtures) . Table  2 includes these also. Note that, in some cases, the
design similarity measure identi® ed an existing product design whose ® xture could
not hold the new product design. In these cases, the usefulness is zero.

Then, for each new product design, we compared the usefulness of the best
available ® xtures to the usefulness of the optimal ® xture. We constructed the optimal
® xture using existing generative ® xture planning approaches (Brost and Goldberg
1996, Zhuang and Goldberg 1996) . Table 3 shows the relative values to facilitate
comparison. These results show that, compared with the simple design similarity
measures, the specialized design similarity measure identi® es a product design
whose ® xture has a higher usefulness metric on average and in nine of the ten
cases. Of course, none of the design similarity measures can ® nd the optimal ® xture,
which is not in the database. This is an inherent limitation of the variant approach.

4.5. Example
The following example illustrates the variant ® xture planning approach.

Consider the new product design shown in ® gure 1. Figure 2 pictures the design,
from the set of existing product designs and ® xtures, that is most similar, according
to the specialized design similarity measure. For the new product design and the
existing ® xture triplet, there are multiple feasible con® gurations and clamp positions.
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Design
similarity P…D i ;D j† Q…D i ;D j† R…Di ;D j†
measure (MID) (TEA) (MVED) S…Di ;D j†

Correlation
coe� cient 0.3593 0.3432 0.1558 0.6001

Table 1. Correlation coe� cients for design similarity and relative ® xture usefulness.

Fixture usefulness for the ® xture of the most similar Fixture
design identi® ed by the design similarity measure usefulness

of the
New P…D i ;D j† Q…D i ;D j† R…D i ;D j† optimal

product (MID) (TEA) (MVED) S…Di ;D j† ® xture

1 7.370 0 11.399 14.629 69.292
2 0.975 0 21.617 22.344 69.717
3 0 0 0 7.832 13.229
4 0 0 0 16.148 33.773
5 0 15.595 15.584 28.454 33.549
6 0 0 0 0.695 23.366
7 3.768 0 0 0 36.504
8 13.977 13.977 13.977 16.726 16.726
9 15.426 0 21.127 21.127 28.253

10 0 0 0 7.360 8.334

Table 2. Ten new product designs and the best available ® xtures.



Figure 3 pictures the best con® guration and clamp position. The corresponding
torque resistance metric equals 18.356.

In this domain, we can construct the optimal ® xture using existing generative
® xture planning approaches (Brost and Goldberg 1996, Zhuang and Goldberg 1996) .
Figure 4 shows the optimal ® xture. The corresponding torque resistance metric
equals 24.872. Thus, the variant ® xture planning approach found an available ® xture
whose relative usefulness equals 0.74.
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Relative ® xture usefulness for the ® xture of the most
similar design identi® ed by the design similarity measure

New P…Di ;D j† Q…Di ;Dj† R…D i ;D j†
product (MID) (TEA) (MVED) S…D i ;D j†

1 0.1064 0 0.1645 0.2111
2 0.3009 0 0.3101 0.3205
3 0 0 0 0.5920
4 0 0 0 0.4781
5 0 0.4648 0.4645 0.8481
6 0 0 0 0.0297
7 0.1032 0 0 0
8 0.8356 0.8356 0.8356 1.0000
9 0.5460 0 0.7478 0.7478

10 0 0 0 0.8831
Average 0.1892 0.1300 0.2523 0.5111

Table 3. Relative ® xture usefulness of the best available ® xtures.

 

Figure 1. New product design.



5. Summary and conclusions

Identifying similar product designs is an important task when making decisions
about a new product design. A manufacturing engineer can use a similar product
design to generate the process plan, to design the ® xture, or to estimate the
manufacturing cost of the new product design. Identifying similar product designs
e� ectively and quickly requires good design similarity measures. However, existing
design similarity measures can be inconsistent and inappropriate tools, which leads
to poor decisions and unnecessary e� ort to ® nd a better solution.
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Figure 2. Existing product design and existing ® xture.

 

Figure 3. New product design in existing ® xture.



This paper discusses an approach to de® ne a specialized design similarity
measure that can help decision-makers ® nd good solutions quickly. This approach
uses an arti® cial neural network. The set of existing product designs and information
is used to train the neural network, which learns the specialized design similarity
measure. Specialized design similarity measures will be useful in variant and case-
based procedures, such as those for process planning, ® xture planning, and manu-
facturability evaluation.

We have applied this approach to a speci® c variant ® xture planning domain. The
neural network generates a design similarity measure that ® nds more appropriate
existing designs than design similarity measures based on individual product
attributes. The better design similarity measure leads to better ® xtures.

Note that this approach requires an expert to de® ne the important product
design attributes and the usefulness function. The approach is practical only if the
database of available product design attributes is available and the usefulness
function for pairs of product designs can be calculated automatically, since training
the neural network requires this data. If this data is not available, it may be more
practical to use an expert system approach like that described in Section 2.2.

While this approach will be an important part of hybrid process planning, future
work in that area needs to consider more complex ® xture planning problems.
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Figure 4. New product design and optimal ® xture.



Appendix A: Design similarity measures

In this ® xture planning domain, the product design attributes of interest were the
Maximum Inter-vertex Distance (MID), the Maximum Vertex-Edge Distance
(MVED), and the Total Enclosed Area (TEA). All of these are functions of the
two-dimensional projection of the product design. The MID is the maximum
distance between any pair of vertices in the polygon. The TEA is the area enclosed
by the polygon. The MVED is the maximum distance between a vertex and a line
containing an edge of the polygon. We developed three single-attribute design
similarity measures. Each measure was based on one of the following three product
design attributes: MID, TEA or MVED.

Let P…D0 ;D j† be the MID-based similarity of product design Dj to product
design D0, where MID(D ) represents the MID of product design D.

P…D0 ;D j† ˆ exp…¡jMID…D0†=MID…D j† ¡ 1j† if MID…D0†=MID…Dj† ¶ 0:9 ;

P…D0 ;D j† ˆ 0 otherwise:

Thus, P…D0 ;D j† ˆ 1 if and only if MID(D0 ) ˆ MID(D j ). Otherwise, P…D0 ;D j†
decreases (and approaches zero) as MID(D0 ) and MID(D j ) get farther apart. See
® gure 5. If MID(D0 ) is signi® cantly smaller than MID(D j ), then P…D0 ;D j† ˆ 0
because a small part will not ® t into a ® xture for a large product design.

Similarly, we can de® ne a TEA-based design similarity measure Q…D0 ;D j† and a
MVED-based design similarity measure R…D0 ;D j†. TEA(D ) represents the TEA of
product design D. MVED(D ) represents the MVED of product design D.

Q…D0 ;D j† ˆ exp…¡jTEA…D0†=TEA…D j† ¡ 1j† if TEA…D0†=TEA…D j† ¶ 0:9 ;

Q…D0 ;D j† ˆ 0 otherwise:

R…D0 ;D j† ˆ exp…¡jMVED…D0†=MVED…D j† ¡ 1j† if MVED…D0†=MVED…D j†
¶ 0:9 ;

R…D0 ;D j† ˆ 0 otherwise:
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P(D0, Dj)

MID(D0)/MID(Dj)1

1

0.9
 

Figure 5. Single-attribute design similarity measure.
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