

National Aeronautics and Space Administration

On Representative Spaceflight Instrument and Associated Sensor Web Framework

Semion Kizhner, Dr. Umeshkumar Patel, Wesley A. Powell, National Aeronautics and Space Administration Goddard Space Flight Center Meg Vootukuru, Syneren Technologies Corporation

Agenda

Introduction

- Heritage sensor web architecture
- Proposed Instrument Sensor Web (ISW) architecture
- Examples of applications

Summary

Introduction

- A Representative Instrument is an instrument of sufficient complexity, such as that of OCEaNS and MMS FPI (See Acronyms), to be considered as a sensor web platform.
- Need for reconfigurable, intelligent, low cost, redundant, data processing, reusable SpaceIP
- FPGA, as well as other programmable logic technology, applicable for *on-board reconfiguration* or adaptation of flight structures
- New approach for Instrument Sensor Web that is scalable and spaceflight worthy

Heritage Sensor Web Shortcomings

- Transmit specific
- Long time range detection, ground based
- Not real-time

Proposed ISW Architecture

- Bi-directional digital communication
- Real time, on-orbit extraction of data
- Time stamping of signals at source (vs. at destination)
- Battery and on-demand powered sensors
- Self describing smart sensor architecture
- Internet connectivity of ISWs [7]-[8]
- Heritage sensor web with portability, reconfigurability

Spaceflight Instrument Sensor Web

ISW scenarios

- Heritage sensors or instruments on ICs or electronics can be networked with a programmable SNR and programmable number of data channels, and flexible instrument configuration
- Heritage instruments reconfigured for new ISW sub-webs
 - Thermal subsystem
 - Integration and Test subsystem
 - Focal Plane subsystem
 - Solid State Recorder (SSR) subsystem

Adaptable ISW System Level Diagram

Summary

- Reconfigurable and Adaptable ISW is important for future spaceflight instruments
- Possible to implement with ROIC, FPGA, DSP
- Future Work Development of ISW Theoretical Framework along [1] and [3]
- Immediate upgradeable systems
 - LISA, MMS with complex instruments and identical electronic instances are perfect
 - ROMPS-based Robotics
 - OCEaNS
 - Any spaceflight where redundancy and reusability and on-board realtime reconfiguration is of value.

References

- [1] Claude E. Shannon "A Mathematical Theory of Communication" Bell Systems Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October 1948
- [2] Kevin A. Delin "The Sensor Web: A Macro-Instrument for Coordinated Sensing", Sensors 2002, 2, 270-285
- [3] John Doyle el. Al "Theoretical Foundations for Ubiquitous Networked Control, Communications and Computing", California Institute of Technology Report, 2005
- [4] Sensor Web Enablement, an OGC White Paper by Mark Reichardt, OGC Document 05-063, 2005

References (Continue)

- [5] Kang Lee "IEEE-1451 and Wireless Sensor Standard", Sensors Conference/Expo 2002, May 20 2002 National Institute of Standards& Technology
- [6] Kang Lee "A Brief Overview of IEEE 1451", Smart and Wireless Sensor Workshop, Boston MA, September 23, 2002, NIST
- [7] David Israel "NASA Space Network IP Services", SIW4-2005, Hanover MD
- [8] Internet Link <u>OMNI Web Server Main Page</u> The world's first web server in space, NASA GSFC by Ronald Parise, James Rush, Semion Kizhner, el.al. 2004.

Acronyms

- ISW Instrument Sensor Web
- FPGA Field Programmable Gate Array
- GIS Geographical Information System
- SSR Solid State Recorder
- JTAG Joint Test Action Group
- DSP Digital Signal Processor and Processing
- SNR Signal to Noise Ratio
- ROIC Read-Out Integrated Circuit
- **ROMPS Robot Operated Material Processing System**
- LISA Laser Interferometer Space Antenna mission
- MMS Magnetosphere Multi-Scale mission
- OCEaNS Ocean Carbon Ecosystem and Near Shore mission