

Mobile Ad Hoc Communications with Strong Physical Layer Interactions

Dr. David Finkleman

August 29, 2006

Pg 1 of 25

Overview

- Introduction to Mobile Ad Hoc Networking and Strong Physical Layer Interactions
 - OSI Layers
 - Nature of STK Communications Module
 - Nature of major network simulations
 - Co-Simulation Issues
- STK-QualNet interaction
- Benchmark-STK-QualNet (BSQ) Capability
- Missile Defense Communication Example
- Conclusion

Logic of the Open Systems Interconnect (OSI) Framework in Mobile Ad Hoc Networks

- Physical Layer
 - The environment must be able to support communications
 - Channel loss (obstructions, atmospherics)
 - Interference
 - Mechanical and physical incompatibilities
- Data Link Layer
 - Establish presence in the medium. Must establish pathways within the communications medium and make physical links consistent (Mac)
- Network Layer
 - Determine topology
- Transport Layer
 - Address and transport packets, queueing, buffering, routing
- Application Layer
 - Data packaging and formatting

Mobile Ad Hoc Networking (MANET)

- Self-organizing networks of dynamically mobile elements independent of fixed infrastructure or centralized control
- General characteristics
 - Dynamic and often unpredictable network tolopogy
 - Variable capacity, often congested, bandwidth limited links
 - Energy and power constrained
 - Low physical security

Protocol and Architectural Approaches to Mitigating Routing Issues

- Link layer protocol approaches
 - Proactive: regularly scheduled route discovery
 - Reactive: route discovery in response to link loss
- Architectural approaches
 - Flat: all nodes equal
 - Hierarchical: some nodes elected or designated for special functionality
- Hybrid approaches
 - Some proactive, some reactive
 - Some flat, some hierarchical

Comparison Of Fixed And Ad Hoc Network Routing

- FIXED NETWORKS: Exploit static routing tables
 - Distance Vector: "Shortest" path
 - Link State: Avoid contention and broken links
- AD HOC NETWORK ANALOGIES
 - DISTANCE VECTOR
 - Ad Hoc On Demand Distance Vector (AODV) (Reactive/Flat)
 - Dynamic Source Routing (DSR) (Reactive/Flat)
 - LINK STATE
 - Optimized Link State Routing (OLSR) (Proactive/Flat)

Bellman-Ford: In any graph There exists a spanning tree, a set of arcs that visits every node exactly once.

Ad Hoc Networking Requires a Much Richer Spectrum of Routing Techniques Than Fixed or Static Networks Do

Possible Protocol Choices

	Parameters	TBRPF	WRP	AODV	DSR	ZRP	DREAM	ODMRP	MAODV
Proactive:	Routing approach	Flat	Flat*	Flat	Flat	Hierarchical	Flat/ Geographical	Flat-Mesh based	Flat-Tree based
IBRF and WRP	Routing scheme	Proactive	Proactive	Reactive	Reactive	Hybrid**	Proactive	Reactive	Reactive
<i>Reactive:</i> AODV and DSR <i>Hierarchical</i> :	Delivery structure	The next hop routing	Source routing	The next hop routing	Source routing	The next hop routing and source routing	Location-based flooding or location- based set next hop routing	Group-based forwarding	Core-based tree
ZRP	Loop free	Yes	Yes, but not instantaneous	Yes	Yes	Yes	Yes	Yes	Yes
<i>Geographical:</i> DREAM <i>Multicast:</i> MAODV and ODMRP	Multiple paths	No	No	No	Yes	Yes	Yes	Yes	No
	Routing metric	Shortest path	Shortest path	Freshest and shortest patch	Shortest path	Local shortest path	Shortest path	Shortest path	Shortest path
	Frequency of updates	Periodically and as needed (link change)	Periodically and as needed	As needed (data traffic)	As needed (data traffic)	Periodically and as needed	Periodically	Periodically and as needed	As needed
	Multicast capabilities	No	No	Yes	No	Yes	No	Yes	Yes

Table 1: Characteristics of chosen protocols

* While WRP uses flat addressing, it can be used hierarchically.

** Hybrid = Inside zone \rightarrow proactive, Outside zone \rightarrow reactive.

STK Transmitters and Receivers

Dbject Browser 🛛 🔀	8.8						
🖃 🌆 Japan Scenario Scanning 🛛 🔺		E Basic					
	1000	Definition *	Type: Complex Receiver				
	1226	Refraction					
HAA Sensor		Description	Specs	- Polariza	ation		
		2D Graphics		Tuno			
All Sensor Comm		Contours	Antenna	Type.	None	-	
Comm Test		Boresight	- burger -				
2 Detection Test	7	😑 🗆 3D Graphics	Frequency: 14.5 GHz 🔤 🔽 Auto Track		ide Axis:		
2 ONIB Comms	8	Attributes			0 deg	-	
Z Two DSPs		Vector	Bandwidth: 🛛 🖓 Muto Scale		ie:		
ALL DSP	123	⊡ Constraints			0.00000000		
All Eacilities and Vehicles	9	Comm	Filter		auo.		
All Sensors		Refraction					
Beale	260	Noise	I Use Spectral Filter Details	Addition	nal Gains and Losses	N	
Boosters	2	Interference		Dro D			
Launch Detection	0	Basic	System Temperature	FIB:F	receive.	<u>v</u>	
NIB Sensors	-75	Sun	Constant	Pred	Demod: 1 units		
- dere	1.00	Temporal	290 K 🐺 Details		Seniod.	<u>v</u>	
Anchorage		Advanced	C Calculate: '				
E-G Beale	68	Zones		Rain M	odel		
306NWEOB	73	Targeting					
SPS-115	15	Vector		1 0.00			
		Special		Out	age: 0.10000	*	
CNIP SMT	79	Plugins			,		
S 5001101 01							
388SouthEOB	9		Object Browser 🛛 🗙				
S 500300011 011	\rightarrow		🖃 👫 Japan Scenario Scenning 🔺		🖃 🛛 Basic		×
				1000	Definition	Type: Complex Source Transmitter 👻	
				2:1	Refraction	·	
			UNIP_RUV		Description	Specs	
EPS.115			HAA_Sensor	(Ph)	= 2D Graphics		
Carofod			CNIP_XMT		Contouro	Frequencir 14.5 GHz 👳	
		OK Car	ncel All_Sensor_Comm		Describit		
- 500ME			Comm_Test	Ð	Dulesigni	Power 30 dBW 👳	
			Betection_Test	6	□ 30 Graphics		
			ONIR_Comms	8	Attributes		
			🖉 Two_DSPs 🧮	2	Vector	Antenna	
			All DSP	1-24	□ Constraints		
			All Facilities and Vehicles	\$	Basic		
			All Sensors		Comm	E1)	
			N Rosle	3160	Refraction	Filler	Protanzation
			Deale Deale	2	Interference	Use Spectral Filter Details	Turpe: None
			A DUUSIEIS	100	Sun		rype.
			S Launch_Detection		Temporal		
			UNIH_Sensors		Advanced	Modulation	
			dscs		Zones	-	The second se
			Anchorage	all a	Targeting	Type: BPSK	Tittangle:
			🖃 🚰 Beale	Te)	Vector		
			E ST 306NWFOR	0	Coccial	File:	Axial Ratio: 0.00000000
			- 🚱 FPS-115	13	special	,	
			- 🕵 CNIP_RCV		Plugins	Use Signal PSD SubCar From 10.22 MHz I	
			CNIP_XMT			Storag an op Subcarrieg. TO 23 MHZ	Additional Gains and Losses
			B SOGNWFOV			Data Bata	
			EPS-115			Data Hate: 16 MBits/Sec	Post-Transmit: 1 units 👜
			388SouthEDB	2		CDMA Second	
			EPS.115			I CDMA Spread	
						Chips/Bit 1	
						1	
						CDMA Gain: 1 0000000 units	
			⊡ SB8SouthFUV			Come dan.	
						Auto Scale Bandwidth	
			🖻 🚧 CapeCod		or l c-		
			i⊟ 🔊 386NE			nee whith whith	

www.centerforspace.com

Network Simulation Objects

ScenarioFileSystems [Properties of Routing Protocol]	×					
🗄 🔲 Hierarchy (0)						
E						
🗄 📲 Mobility						
🕀 🖽 Radio/Physical Layer						
🕂 🖽 MAC Protocol						
ARP Specs						
😥 🕀 😥 😥 😥 😥						
🚊 📲 Routing Protocol						
E Routing Policy						
Routing Protocol						
⊞ 😕 HSRP Protocol						
Default Routes						
Gateway Configuration						
Transport Layer						
Router Specs	•					
FileSystems 🔒 Inspector						
<u>× ↓≙ ↓₩ ⊭= ■</u> ●						
Routing Protocol AODV						

Comm Link Issues

- Sources of impairment are distributed among all layers
 - Propagation Delay (Layer 1)
 - Speed of light plus medium phenomenology
 - Transmission Delay (Layer 2)
 - Serialization and Protocol Overhead
 - Processing Delay (Layer 3)
 - Switching and Queuing Routers and Buffers
 - Rotation Delay (Layers 4-7)
 - Application specific commands
 - How a Server calls up data and presents it on a client device

Physics and Simulation Issues

- Satisfying physical layer constraints is necessary but not sufficient
 - Communication can still fail even though there is line of sight and link margin
- Communication network simulations ...
 - Generally assume that the physical world is frozen while network transactions evolve
 - Are event driven
 - Often represent mobility discretely
 - Doppler accelerations may be discontinuous
 - Almost always represent satellites as geostationary retransmitters
- Physical layer simulations ...
 - Have no paradigm for wired networks

Mobile Networking With Strong Physical Layer Interactions

- Physical phenomena occur on the same time scale or more rapidly than network transactions
 - Deep space with long propagation delays
 - Many protocols are intolerant of delays
 - Hypervelocity vehicles
 - Routes cease to exist before they can be used
- Very strong and rapid cross-layer interactions

Simulation Environment Evolution

MMcD1 Doc, I'll send you a new graphic for this so it's more readable. Meghan McDermott, 8/22/2006

NetSim Concept

www.centerforspace.com

might want to snag these images separately like you did for the others so they are more readable and don't include the dog MMcD2 background. Meghan McDermott, 8/22/2006

NetSim Limitations

- One-time physical layer assessment

 Cross layer processes difficult to represent
- Limited interchange of comm host attributes
- Mobility represented by multiple waypoints
- NetSim executes only wireless links
- Significant effort to instantiate network components and Layer 2-5 processes

Benchmark-STK-QualNet (BSQ)

BSQ Development

- Vehicle to extract objects and data from interacting simulations and distribute objects and data among the simulations
 - Benchmark input files into STK
 - Benchmark Message Streams from Hosts into QualNet
 - STK objects into QualNet
 - QualNet message deliveries into Benchmark
 - QualNet connectivity into STK
- Tool to generate or modify Benchmark input scenarios rapidly
- Standalone interface between any pair of simulations

BSQ Development Issues

- Different object parent-child relationships in each participating simulation
 - Benchmark spawns children of the parent missile object for every staging or deployment event
 - STK creates independent objects at the same level for each stage or deployed object
 - QualNet embeds all OSI layer characteristics within each Host object
- Different program architectures

BSQ Application

📰 BSQ - bmd Benchmark / STK / Qualnet	🔜 BSQ - bmd Benchmark / STK / Qualnet
File Run Help	File Run Help
O G Monte Control Integration. O G Machine Control Integration. O G Machine Control Integration. O G Machine Control Integration. O G Monte Control Integration. O G Machine Control Integration. O G Machi	Acit Trop Air_Defense_System_Integrator. Beale block_04_c2bmc_H2_ block_06_c2bmc_H3_ Clear Cobra_Dane Cobra_Dane_like_LR12_ Cobra Dane_like L (R12) Colorao Springs DC DSCS1 DSCS2 DSCS4 DSP_Lant DSP_WPAC DSPIN FBX_T_R21_ Fylingdales Generic_c2bmc_H1_
Benchmark Loaded Qualnet Loaded Qualnet Loaded	

STK Scenario

Scenario Export to QualNet

Qualnet Execution

1100 Packets Sent, 460 Packets Received

Ship to Satellite Dropout and Latency

State Of Development And Research

- Tools maturing for robust physical layer and higher layer simulation
- Emerging capability for protocol stack optimization for sparse, mobile, ad hoc networks
- STK/NetSim limitations recognized
- BSQ dedicated interface paradigm developed
 - More efficient and problem tuned than HLA, DIS, or other standards
- Interfaces will be available to all licensed for STK and a communication network simulation environment (QualNet, OPNET, etc.)

